
MATH 200 Name: Student-No.:

1. Consider the surface described by the equation exyz−1 + 3 = x2 + y2 + z2.

(a)4 marks Find a function F (x, y, z) such that (a, b, c) is on the surface if and only if we have
F (a, b, c) = 0. Compute the gradient of F .

Solution:

It suffices to take F (x, y, z) = exyz−1 + 3− x2− y2− z2 or F (x, y, z) = x2 + y2 +
z2 − exyz−1 − 3.

∂F

∂x
(x, y, z) = yzexyz−1 − 2x

∂F

∂y
(x, y, z) = xzexyz−1 − 2y

∂F

∂z
(x, y, z) = xyexyz−1 − 2z

Thus ∇F (x, y, z) = 〈yzexyz−1−2x, xzexyz−1−2y, xyexyz−1−2z〉 (or - that value).

(b)4 marks Give the equation of the tangent plane to the surface at (x0, y0, z0) = (1, 1, 1) in the
form x + by + cz + d = 0. Note that we require the coefficient next to x to be 1.

Solution: The tangent plane is given by∇F (x0, y0, z0)·(x−x0, y−y0, z−z0) = 0.
We have ∇F (1, 1, 1) = (−1,−1,−1). Therefore we obtain

−(x− 1)− (y − 1)− (z − 1) = 0

And hence the equation is x + y + z = 3.

2. The sugar concentration in an infinite 3D compost bin is given by the equation S(x, y, z) =
(x + y + 2z)2. A fruit fly is at position (1, 1, 1).

(a)2 marks Compute the directional derivative of S at (1, 1, 1) in the direction of ~u = (−1, 0, 1).

Solution: Note that∇S(x, y, z) = 2(x+y+2z)〈1, 1, 2〉. In particular∇S(1, 1, 1) =
〈8, 8, 16〉. Therefore the directional derivative is

D~uS(1, 1, 1) = 〈8, 8, 16〉 · 〈−1, 0, 1〉/
√

2

which gives D~uS(1, 1, 1) = 8√
2
.

Note: If you forgot to divide by the norm of ~u you get no marks.

(b)2 marks The fruit fly is feeling a little hungry. In what (unit) direction should the fly move
if it wishes to increase the concentration of sugar in the fastest possible way?

Solution: In the direction of the gradient ∇S(1, 1, 1) = 〈8, 8, 16〉. Therefore
the unit direction is 〈1, 1, 2〉/

√
6.
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(c)2 marks The fly is now happy with the amount of sugar in its position. Give a (unit) direction
in which the fly could move if it wishes to keep the concentration of sugar constant.

Solution: Any direction orthogonal to the gradient works. For instance

~u = 〈1, 1,−1〉/
√

3.

3. (a)6 marks A differentiable function z = f(x, y) is unknown, but an alien supercomputer gave
us precise values of f(x, y) and its derivatives on points A,B,C and D.

point f fx fy fxx fyy fxy
A 1 0 0 1 0 −5
B 1 0 −2 3 8 4
C 2 0 0 3 3 −2
D 2 0 0 3 3 6

For points A,B,C and D determine whether they are a local minimum, local max-
imum, a saddle point, or none of the above.

Solution: A,C and D are critical points because ∇f = 0, whereas B is not a
critical point. In each case we compute fxxfyy − f 2

xy. In A the value is negative,
thus A is a saddle point. In C it is positive and fxx is positive, thus it is a local
min. in D the value is negative, thus it is a saddle point.

• A is: a saddle point.

• B is: none of the above.

• C is: a local minimum.

• D is: a saddle point.

(b)2 marks (Bonus marks) Let f : R2 → R be a differentiable function such that f(1, 0) =
f(0, 0) = 0. Show that there exists 〈a, b〉 such that ∇f(a, b) is orthogonal to 〈1, 0〉.
Hint: Define g(t) = f(t, 0). Combine the 1D mean value theorem and the chain
rule to conclude.

Solution: Note that g(0) = f(0, 0) = 0 and g(1) = f(1, 0) = 0. By the mean
value theorem, there is c ∈ (0, 1) such that g′(c) = 0. On the other hand,
g′(c) = fx(c, 0) ·1+fy(c, 0) ·0 = ∇f(c, 0) · 〈1, 0〉. Putting this together we obtain
that ∇f(c, 0) · 〈1, 0〉 = 0 and thus ∇f(c, 0) is orthogonal to 〈1, 0〉. Therefore
setting 〈a, b〉 = 〈c, 0〉 works.
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