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Why would coding be a good idea?

@ Instead of a complicated homeomorphism we get a shift
action.

@ If the coding is “good"”, dynamical properties are preserved.

@ Easier to describe, run algorithms, etc.




Why would coding be a good idea?

@ Instead of a complicated homeomorphism we get a shift
action.

@ If the coding is “good"”, dynamical properties are preserved.

@ Easier to describe, run algorithms, etc.

V.
Theorem

If X is a Cantor space and T is an expansive action then (X, T) is
conjugate to a symbolic system (a subshift).
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» G is a countable group.

» Ais a finite alphabet. Ex: A = {0, 1}.

» AC is the set of configurations, x : G — A

> o: G x A® — AC is the left shift action given by:

o(h,x)g == ah(x)g = Xp-1g-



» G is a countable group.

» Ais a finite alphabet. Ex: A = {0, 1}.

» AC is the set of configurations, x : G — A

> o: G x A® — AC is the left shift action given by:

o(h,x)g == ah(x)g = Xp-1g-

Definition: full G-shift

The pair (A®, o) is called the full G-shift.
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Definition: G-subshift

X C A€ is a subshift if and only if it is invariant under the action
of o and closed for the product topology on A€.




Definition: G-subshift
X C A€ is a subshift if and only if it is invariant under the action
of o and closed for the product topology on A€.

Examples:

» X = {X € {0,1}# | no two consecutive 1's in x}

» X = {x € {0,1}¢ | finite CC of 1's are of even Iength}



Luckily, subshifts can also be described in a combinatorial way.
o A pattern is a finite configuration, i.e. p € AF where F C G
and |F| < oo. We denote supp(p) = F.
o A cylinder is the set [a], := {x € A® | x; = a}.

[p] == m [Pele-
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Luckily, subshifts can also be described in a combinatorial way.
o A pattern is a finite configuration, i.e. p € AF where F C G
and |F| < oo. We denote supp(p) = F.
o A cylinder is the set [a], := {x € A® | x; = a}.

[p] == m [Pele-

gesupp(p)

Proposition

A subshift is a set of configurations avoiding patterns from a set F.

X=Xr=A\ |J o%(n))

geG,peF




Example in Z?: Hard-square shift

Example: Hard-square shift. X is the set of assignments of Z2
to {0, 1} such that there are no two adjacent ones.




Example: one-or-less subshift

Example: one-or-less subshift.

X1 :={x€{0,1}° |0 ¢ {xy,x,} = u=v}.




Example: Fibonacci in F,.
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Example: Wang tiling

A subshift defined by Wang tiles: two tiles can be put next to each
other only their adjacent colors match.

X NAX
XK

XX XXX XXX D

XXX XXX XX
XXX TXIX XX S




Subshifts of finite type (SFT)
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Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by
a finite set of forbidden patterns.

» A simple class with respect to the combinatorial definition
» 2D-SFT = Wang tilings.
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Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift X C AC is strongly aperiodic if all its configurations
have trivial stabilizer

Vx € X,Vg € G, 08(x) =x =g =1¢.

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao

2015)

There exist strongly aperiodic SFTs on Z?.




Example of strongly aperiodic Z?-SFT: Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.
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Some recent results

» If G is r.p. with a strongly aperiodic SFT, then G has
decidable WP (Jeandel, 2015).

» If G has at least two ends, then it has no strongly aperiodic
SFTs (Cohen, 2015)

» Generalization of Kari's construction to some G x Z (Jeandel,
2015).

» Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici,
2015).

» Surface groups (Cohen & Goodman-Strauss, 2015).

» groups Z? x H where H has decidable WP (B & Sablik,
2016).
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What is a simulation theorem?

Finitely presented group

A group G is finitely presented if it can be described as G = (S|R)
where both S and R C (SU S™1)* are finite.

Z%2 = (a,b|aba tb71)



What is a simulation theorem?

Finitely presented group

A group G is finitely presented if it can be described as G = (S|R)
where both S and R C (SU S™1)* are finite.

Z%2 = (a,b|aba tb71)

Recursively presented group

A group G is recursively presented if it can be described as
G = (S|R) where S C N and R C (SU S™1)* are recursive sets.

L={(at|(at"at™™)? neN)
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What is a simulation theorem?

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]
There are finitely presented groups with undecidable word problem

Apply Highman's theorem to
G =(a,b,c,d| b"ab" = ¢~ "dc", n € HALT).




A dynamical simulation theorem

Effectively closed dynamical system

An action T : Z ~ {0,1}N is effectively closed if there exists a
Turing machine which on entry w € {0,1}* enumerates a language

L such that:
T([w]) = {0, 13N\ |J[u]-
uel




A dynamical simulation theorem

Effectively closed dynamical system

An action T : Z ~ {0,1}N is effectively closed if there exists a
Turing machine which on entry w € {0,1}* enumerates a language

L such that:
T([w]) = {0, 13N\ |J[u]-
uel

Theorem (Hochman, 2009)

Let T :Z ~ {0,1}N be an effectively closed action. There exists a
Z3-SFT such that its Z-subaction is an almost 1-1 extension (very
close) of T.




The case of subshifts

sofic subshift

A subshift is called sofic if it is the image of an SFT by a local
recoding.
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A Z-subshift is effectively closed if it can be described by a
recursively enumerable set of forbidden words.
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The case of subshifts

sofic subshift

A subshift is called sofic if it is the image of an SFT by a local
recoding.

| \

Effectively closed subshift

A Z-subshift is effectively closed if it can be described by a
recursively enumerable set of forbidden words.

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen 2010)

For effectively closed Z-subshift X there exists a Z?-sofic subshift
Y such that every y € Y is a periodic vertical extension of a
configuration x € X.




The case of subshifts




So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.



So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Let x be a fixed point of the Thue-Morse substitution.

0— 01 — 0110 — 01101001 — 0110100110010110 — ...

Then X = Orb,(x) is strongly aperiodic and effectively closed.
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So... why is simulation important?

» Easy construction of strongly aperiodic Z?-SFTs

» Z2-SFTs with no computable configurations (Original result
by Hanf-Myers 1974)

» Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)




Two new results in general groups

Let T: G ~ {0,1}N be an effectively closed action of a finitely
generated group.

Theorem (B-Sablik, 2016)

For any semidirect product Z% x G there exists a Z> x G-SFT such
that its G-subaction is an extension of T.




Two new results in general groups

Let T: G ~ {0,1}N be an effectively closed action of a finitely
generated group.

Theorem (B-Sablik, 2016)

For any semidirect product Z? x G there exists a Z> x G-SFT such
that its G-subaction is an extension of T.

Theorem (B, 2017)

For any pair of infinite and finitely generated groups Hy, H, there
exists a (G x Hy x H»)-SFT such that its G-subaction is an
extension of T.
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How does one prove such a thing?

Let's keep it simple, let's do G x Z2. Consider
v {0, 11N — {0,1,$}4 given by:

() x, ifj=23" mod 31
X); =
’ $  in the contrary case.

If we write x = xpXx1Xpx3 ... we obtain,

V(x) =...8x08x1x09%9x09x2x0$x1x09Px09x0x1 %088 x0%x3%0 - . -
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How does one prove such a thing?

- $x08x1 X058 x0$x0x0 5 x1 X058 X055 x0 S x1 x0$S X0 $x3x0 % . . .

!

8081088 x0 X0 x0 5 x1 %05 x0 5 S x0 S x1 X0 5 x0 P X3 x0F . . .

I

L Sx18x0x1 88 x1 $x3x1 $x0x1 $8x1 85 x1 $xox1 $Fx1 $xaxa B . ..



How does one prove such a thing?

> pick afinite set of generators S of G.

> construct a subshift I where every configuration is (up to shifts
and a set of measure 0) an S-tuple of configurations of the
previous form.

S= {1(;,51,. ..S,,}

(W(x), W(T*(x),...,¥(T*"(x)) en
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> pick afinite set of generators S of G.

> construct a subshift I where every configuration is (up to shifts
and a set of measure 0) an S-tuple of configurations of the
previous form.

S= {1(;,51,. ..S,,}

(W(x), W(T*(x),...,¥(T*"(x)) en

If T is an effectively closed action, I is effectively closed.
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How does one prove such a thing?

> Take I and construct a sofic Z2 subshift I having I in every
horizontal row.

> Using the decoding argument, construct a map from 1 to X.
> Put in every G-coset of G x Z? a configuration of .
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How does one prove such a thing?
V(T (x))
( W( T (x) )
: en
W(To(x)
V(T (x))
(‘V(T“(X)))
: en
W(TH(x)

W(x)
(w(Tﬂ (x)))
: el
W(T (x))

S15n

S1



Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then
G x Z9 admits a SA SFT.




Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then
G x Z9 admits a SA SFT. |

Theorem (B 2017)

If G; are at least three infinite and finitely generated groups with
decidable word problem. Then Gy X --- X G, admits a SA SFT.

v




What about the Grigorchuk group?

0—0 0—0

0—~0
0—1 0
1—0 1

The Grigorchuk group is generated by the actions a, b, ¢, d over
{0, 1}N.



What about the Grigorchuk group?

@ The Grigorchuk group is infinite and finitely generated.

@ It contains no copy of Z as a subgroup. For every g € G,
there is n € N such that g" = 1.

@ Decidable word problem (and conjugacy problem).
@ It has intermediate growth.

@ It is commensurable to its square. ie: G and G x G have an
isomorphic finite index subgroup.
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What about the Grigorchuk group?

> If G is commensurable to G x G, then G is also commensurable
to G x G x G.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability
invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.




Thank you for your attention!
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