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Motivation

A dynamical system is a pair (X ,T ) where X is a topological
space and T : G y X is a group action by homeomorphisms of X .

A Z-action by homeomorphisms.
T : R2/Z2 → R2/Z2 given by T (x , y) = (2x + y , x + y) mod 1.
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Coding of an orbit
A dynamical system might be complicated. A good idea is to code
its trajectories using a partition.

A Z-action by homeomorphisms.
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Motivation

Why would coding be a good idea?
Instead of a complicated homeomorphism we get a shift
action.
If the coding is “good”, dynamical properties are preserved.
Easier to describe, run algorithms, etc.

Theorem
If X is a Cantor space and T is an expansive action then (X ,T ) is
conjugate to a symbolic system (a subshift).
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Definitions

I G is a countable group.
I A is a finite alphabet. Ex: A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by:

σ(h, x)g := σh(x)g = xh−1g .

Definition: full G-shift
The pair (AG , σ) is called the full G-shift.
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Definitions

Definition: G-subshift
X ⊂ AG is a subshift if and only if it is invariant under the action
of σ and closed for the product topology on AG .

Examples:

I X =
{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
I X =

{
x ∈ {0, 1}G | finite CC of 1’s are of even length

}
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Definitions

Luckily, subshifts can also be described in a combinatorial way.

A pattern is a finite configuration, i.e. p ∈ AF where F ⊂ G
and |F | <∞. We denote supp(p) = F .
A cylinder is the set [a]g := {x ∈ AG | xg = a}.

[p] :=
⋂

g∈supp(p)
[pg ]g .

Proposition
A subshift is a set of configurations avoiding patterns from a set F .

X = XF := AG \
⋃

g∈G,p∈F
σg ([p])
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Example in Z2: Hard-square shift

Example: Hard-square shift. X is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Example: one-or-less subshift

Example: one-or-less subshift.

X≤1 := {x ∈ {0, 1}G | 0 /∈ {xu, xv} =⇒ u = v}.
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Example: Fibonacci in F2.
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Example: Wang tiling

A subshift defined by Wang tiles: two tiles can be put next to each
other only their adjacent colors match.



Subshifts of finite type (SFT)

Definition: subshift of finite type (SFT)
A subshift of finite type (SFT) is a subshift that can be defined by
a finite set of forbidden patterns.

I A simple class with respect to the combinatorial definition
I 2D-SFT ≡ Wang tilings.
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Definition (Strongly aperiodic subshift)
A subshift X ⊂ AG is strongly aperiodic if all its configurations
have trivial stabilizer

∀x ∈ X ,∀g ∈ G , σg (x) = x ⇒ g = 1G .

Proposition
Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao
2015)
There exist strongly aperiodic SFTs on Z2.
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Example of strongly aperiodic Z2-SFT: Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.
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Some recent results

I If G is r.p. with a strongly aperiodic SFT, then G has
decidable WP (Jeandel, 2015).

I If G has at least two ends, then it has no strongly aperiodic
SFTs (Cohen, 2015)

I Generalization of Kari’s construction to some G × Z (Jeandel,
2015).

I Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici,
2015).

I Surface groups (Cohen & Goodman-Strauss, 2015).
I groups Z2 o H where H has decidable WP (B & Sablik,

2016).
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Simulation Theorems



What is a simulation theorem?

Finitely presented group
A group G is finitely presented if it can be described as G = 〈S|R〉
where both S and R ⊂ (S ∪ S−1)∗ are finite.

Z2 = 〈a, b | aba−1b−1〉

Recursively presented group
A group G is recursively presented if it can be described as
G = 〈S|R〉 where S ⊂ N and R ⊂ (S ∪ S−1)∗ are recursive sets.

L = 〈a, t | (atnat−n)2, n ∈ N〉
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What is a simulation theorem?

Theorem (Highman 1961)
For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]
There are finitely presented groups with undecidable word problem

Apply Highman’s theorem to
G = 〈a, b, c, d | b−nabn = c−ndcn, n ∈ HALT〉.
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A dynamical simulation theorem

Effectively closed dynamical system
An action T : Z y {0, 1}N is effectively closed if there exists a
Turing machine which on entry w ∈ {0, 1}∗ enumerates a language
L such that:

T ([w ]) = {0, 1}N \
⋃
u∈L

[u].

Theorem (Hochman, 2009)
Let T : Z y {0, 1}N be an effectively closed action. There exists a
Z3-SFT such that its Z-subaction is an almost 1-1 extension (very
close) of T .
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The case of subshifts

sofic subshift
A subshift is called sofic if it is the image of an SFT by a local
recoding.

Effectively closed subshift
A Z-subshift is effectively closed if it can be described by a
recursively enumerable set of forbidden words.

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen 2010)
For effectively closed Z-subshift X there exists a Z2-sofic subshift
Y such that every y ∈ Y is a periodic vertical extension of a
configuration x ∈ X.
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So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Example
Let x be a fixed point of the Thue-Morse substitution.

0→ 01→ 0110→ 01101001→ 0110100110010110→ . . .

Then X = Orbσ(x) is strongly aperiodic and effectively closed.
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I Z2-SFTs with no computable configurations (Original result
by Hanf-Myers 1974)

I Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)



So... why is simulation important?

Examples
I Easy construction of strongly aperiodic Z2-SFTs
I Z2-SFTs with no computable configurations (Original result

by Hanf-Myers 1974)

I Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)



So... why is simulation important?

Examples
I Easy construction of strongly aperiodic Z2-SFTs
I Z2-SFTs with no computable configurations (Original result

by Hanf-Myers 1974)
I Classifying the entropies of Z2-SFTs (Original result by

Hochman-Meyerovitch 2010)



Two new results in general groups

Let T : G y {0, 1}N be an effectively closed action of a finitely
generated group.

Theorem (B-Sablik, 2016)
For any semidirect product Z2 o G there exists a Z2 o G-SFT such
that its G-subaction is an extension of T .

Theorem (B, 2017)
For any pair of infinite and finitely generated groups H1,H2 there
exists a (G × H1 × H2)-SFT such that its G-subaction is an
extension of T .
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How does one prove such a thing?

Let’s keep it simple, let’s do G × Z2.

Consider

Ψ : {0, 1}N → {0, 1, $}Z given by:

Ψ(x)j =
{
xn if j = 3n mod 3n+1

$ in the contrary case.

Example
If we write x = x0x1x2x3 . . . we obtain,

Ψ(x) = . . . $x0$x1x0$$x0$x2x0$x1x0$$x0$$x0$x1x0$$x0$x3x0 . . .
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How does one prove such a thing?

B pick afinite set of generators S of G .
B construct a subshift Π where every configuration is (up to shifts
and a set of measure 0) an S-tuple of configurations of the
previous form.

S = {1G , s1, . . . sn}

(Ψ(x),Ψ(T s1(x), . . . ,Ψ(T sn (x)) ∈ Π

Claim
If T is an effectively closed action, Π is effectively closed.
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How does one prove such a thing?

B Take Π and construct a sofic Z2 subshift Π̃ having Π in every
horizontal row.

B Using the decoding argument, construct a map from Π to X .
B Put in every G-coset of G × Z2 a configuration of Π̃.
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What about the Grigorchuk group?

a id

b

c

d

0→ 1
1→ 0

0→ 0
1→ 1

0→ 0

1→ 1

1→ 1 1→ 1

0→ 0

0→ 0

The Grigorchuk group is generated by the actions a, b, c, d over
{0, 1}N.



What about the Grigorchuk group?

The Grigorchuk group is infinite and finitely generated.
It contains no copy of Z as a subgroup. For every g ∈ G ,
there is n ∈ N such that gn = 1G .
Decidable word problem (and conjugacy problem).
It has intermediate growth.
It is commensurable to its square. ie: G and G × G have an
isomorphic finite index subgroup.
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Thank you for your attention!
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