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What’s a shift space?
A dynamical system might be complicated. A good idea is to code
its trajectories using a partition.
A Z-action by homeomorphisms.
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Why a group action?
Let T ,S be two homeomorphisms T : X → X and S : X → X .
We are interested in the system where both S and T act over X .

B T is an odometer acting on {0, 1}Z: T ≈ +1.
B S is a shift acting on {0, 1}Z: S ≈ ×2.

2× (x + 1) = (2× x) + 2  ST = T 2S
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Why a group action?

〈S,T | ST = T 2S〉 ∼= BS(1, 2)

T T
S S

T
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Context

I G is a finitely generated group.
I A is a finite alphabet. Ex: A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by:

σ(h, x)g := σh(x)g = xh−1g .

Definition: full G-shift
The pair (AG , σ) is called the full G-shift.
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Example

σ(10,18)

Figure: A random configuration x ∈ {�,�}Z2/20Z2 and its image by
σ(10,18).
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Context

Definition: subshift
X ⊂ AG is a subshift or a shift space if and only if it is invariant
under the action of σ and closed for the product topology on AG .

Luckily, these objects can also be described in a combinatorial way.

Proposition
A subshift is a set of configurations avoiding patterns from a list F .

p ∈ AS , [p] = {x ∈ AG | x |S = p}

X = XF = AG \
⋃

g∈G,p∈F
σg([p])
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Example in Z2: Hard square shift

The set of assignments of Z2 to {0, 1} such that there are no two
adjacent ones.
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Example: one-or-less subshift

X≤1 := {x ∈ {0, 1}G | 0 /∈ {xu, xv} =⇒ u = v}.
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Example: Hard square in F2.
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Example: Mirror shift on Z2
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Definitions

Classes of subshifts
A subshift X ⊂ AG is called:

a subshift of finite type (SFT) if X = XF for some finite F .
Ex: Hard square shift.

a sofic subshift if X is the image of an SFT by a topological
factor (a local recoding). Ex: One-or-less in Z2.
an effectively closed subshift if X can be defined by a
recursively enumerable coding of a set of forbidden patterns.
Ex: Mirror shift in Z2.
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Why computability and dynamics?

Dynamical objects
B Expansivity, periodic points, aperiodicity, invariant measures,
entropy, recurrence, mixing, minimality, etc.

Computational objects
B Finite information, description by Turing machines,
computability of invariants, domino problem, simulation, etc.

The purpose of my thesis is to study the interplay between
computability and dynamics in shift spaces in groups.
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Overview

Some topics I worked on:
Aperiodic subshifts (and SFTs) on groups.
Realization of subshifts with uniform densities.
Effectively closed subshifts, subactions and simulation
theorems.
Notions of computability for subshifts on groups.
Computability in automorphism groups and the topological
full group of a shift space.
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Overview

Some topics I worked on:
(1) Aperiodic subshifts (and SFTs) on countable groups.
Realization of subshifts with uniform densities.
(1) Effectively closed subshifts, subactions and
simulation theorems.
Notions of computability for subshifts on groups.
(2) Computability in automorphism groups and the
topological full group of a shift space.
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Subactions, effectiveness, simulation and
aperiodicity.

15



Expansivity

Definition
An action T : G y X is expansive if it separates distinct points.

There is C > 0, x 6= y =⇒ ∃g ∈ G , d(T g(x),T g(y)) > C

Odometers
Odometers are not expansive (the action is an isometry).

Shift spaces
Every shift space is expansive
If x 6= y , there is g ∈ G such that xg 6= yg . We have

σg−1(x)|1G 6= σg−1(y)|1G .
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What about the subactions of these classes?

Let X ⊂ AG be a subshift and H ≤f.g. G .
B What can we say about the system (X , σ|H)?
B Same question when X is an SFT, sofic or effectively closed.

Remark: Subshifts are expansive, subactions not necessarily

n

yn

m

ym

inf
n 6=m

d(Orbσ|Z(yn),Orbσ|Z(ym)) = 0
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Question 1: which are the subactions?

Effectively closed action
T : G y X ⊂ {0, 1}N is effectively closed if it can be described by
Turing machines:

X = {0, 1}N \
⋃

w∈L[w ], L is recursively enumerable.
There is a Turing machine which on entry s ∈ G and
u ∈ {0, 1}∗ enumerates the complement of T s([u]).

Every subaction of an effectively closed subshift (also sofic/SFT) is
effectively closed.

18
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Question 2: can we realize e.c.d.s ?

Question
Given an effectively closed dynamical system. Can we realize it as
a subaction of an SFT/sofic subshift?

Before answering that question, let us motivate this kind of results:
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The philosophy behind it

Finitely presented group
A group G is finitely presented if it can be described as G = 〈S|R〉
where both S and R ⊂ (S ∪ S−1)∗ are finite.

Z2 ∼= 〈a, b | aba−1b−1〉.
BS(1, 2) ∼= 〈a, b | aba−2b−1〉.

Recursively presented group
A group G is recursively presented if it can be described as
G = 〈S|R〉 where S ⊂ N and R ⊂ (S ∪ S−1)∗ are recursive sets.

L ∼= 〈a, t | (atnat−n)2, n ∈ N〉.⊕
i∈N

(Z/2Z) ∼= 〈{an}n∈N | {a2
n}n∈N ∪ {ajaka−1

j a−1
k }j,k∈N〉.
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The philosophy behind it

Theorem (Higman 1961)
For every recursively presented group H there exists a finitely
presented group G such that H embeds into G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

word problem: is it algorithmically decidable if a word over a set
of generators of a group represents the identity?

Theorem: (Novikov 1955, Boone 1958)
There are finitely presented groups with undecidable word problem

Just apply Higman’s theorem to
G = 〈a, b, c, d | b−nabn = c−ndcn, n ∈ HALT〉... done!
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Two recent simulation results

Theorem (Hochman 2009)
For every effectively closed action T : Zd y X ⊂ {0, 1}N there
exists a Zd+2-SFT X̂ such that one of its Zd -subactions is an
extension of T .

(X̂ , σ)Zd+2

Zd (X̂ , σ|Zd ) (X ,T )

subaction

factor

Moreover, the factor is small.
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Two recent simulation results

One can do better in the expansive case:

Theorem (Aubrun-Sablik 2010, Durand-Romaschenko-Shen 2010)
Every effectively closed Zd -subshift is the subaction (projective
subaction) of a Zd+1-sofic subshift.

(X̂ , σ) (Ŷ , σ)Zd+1

Zd (X ,T )

symb factor

subaction
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An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)
A subshift X ⊂ AG is strongly aperiodic if the shift action is free

∀x ∈ X ,∀g ∈ G , σg(x) = x ⇒ g = 1G .

Proposition
Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel-Rao
2015)
There exist strongly aperiodic SFTs on Z2.
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Example of strongly aperiodic Z2-SFT: Robinson tileset

25



Simulation in the case of subshifts

∈ XZ-effective

∈ YZ2-sofic

p. subaction
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So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Example
Let x be a fixed point of the Thue-Morse substitution.

0→ 01→ 0110→ 01101001→ 0110100110010110→ . . .

Then X = Orbσ(x) is strongly aperiodic and effectively closed.

Example
A Sturmian subshift defined by an irrational computable slope α.
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So... why is simulation important?

Examples
I Easy construction of strongly aperiodic Z2-SFTs

I Z2-SFTs with no computable configurations (Original result
by Hanf-Myers 1974)

I Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)

What if we were able to do this in general groups?
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Two new results in general groups

Let T : G y X ⊂ {0, 1}N be an effectively closed action of a
finitely generated group.

Theorem (B-Sablik, 2016)
For any semidirect product Z2 o G there exists a Z2 o G-SFT such
that its G-subaction is an extension of T .

Theorem (B, 2017)
For any pair of infinite and finitely generated groups H1,H2 there
exists a (G × H1 × H2)-SFT such that its G-subaction is an
extension of T .
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Strongly aperiodic SFTs in these groups.

We want to go ahead and use the simulation theorems to produce
strongly aperiodic SFTs, but...

Question
For which groups can I find an effectively closed strongly
aperiodic subshift?

In fact...
Question by Glasner and Uspenskij 2009

Is there a countable group which admits no aperiodic subshifts
over the alphabet A = {0, 1}?
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Strongly aperiodic subshifts?

Question by Glasner and Uspenskij 2009
Is there a countable group which admits no aperiodic subshifts
over the alphabet A = {0, 1}?

Theorem (Gao-Jackson-Seward, 2009)
No! All do.

And the proof is a little bit technical.

Theorem (Aubrun-B-Thomassé, 2015)
No! All do.

But the proof is much shorter, moreover, the construction is
effective for groups with decidable word problem. It is based on a
probabilistic argument using Lovász local lemma.
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Strongly aperiodic subshifts?

Moreover, a recent result by Jeandel states:

Theorem (Jeandel, 2015)
Let G be a recursively presented group. If G admits an effectively
closed strongly aperiodic subshift then its word problem is
decidable.

With our result we can write:

Theorem (Aubrun-B-Thomassé, 2015)
Let G be a recursively presented group. G admits an effectively
closed strongly aperiodic subshift if and only if its word problem is
decidable.
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Strongly aperiodic SFTs!

Theorem (B-Sablik, 2016)
If G is finitely generated, has decidable word problem and d > 1.
Then any group of the form Zd oϕ G admits a SA SFT.

Ex: The discrete Heisenberg group.

Theorem (B, 2017)
If Gi are at least three infinite and finitely generated groups with
decidable word problem. Then G1 × · · · × Gn admits a SA SFT.

Ex: (not an obvious corollary) The Grigorchuk group.
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A negative result

Recall the subshift:

X≤1 = {x ∈ {0, 1}G | 0 /∈ {xg , xh} =⇒ g = h}

configurations x ∈ X≤1 have at most one occurrence of 1.

Theorem (Aubrun-B-Sablik 2015)
If G is finitely generated and recursively presented, then X≤1 is
effectively closed if and only if G has decidable word problem.

In particular, there are groups for which X≤1 is not even conjugate
to the subaction of an effectively closed subshift.

36



A negative result

Recall the subshift:

X≤1 = {x ∈ {0, 1}G | 0 /∈ {xg , xh} =⇒ g = h}

configurations x ∈ X≤1 have at most one occurrence of 1.

Theorem (Aubrun-B-Sablik 2015)
If G is finitely generated and recursively presented, then X≤1 is
effectively closed if and only if G has decidable word problem.

In particular, there are groups for which X≤1 is not even conjugate
to the subaction of an effectively closed subshift.

36



Computability in group invariants of shift spaces
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Motivation
Given a subshift (X , σ), its automorphism group is given by

Aut(X ) = {φ : X → X homeomorpism, [σ, φ] = id}

B Aut(AG) is the group of reversible cellular automata.

Example and non-example.
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Motivation

The topological fullgroup of a dynamical system (X ,T ) where
T : G y X is

[[T ]] = {φ ∈ Homeo(X ) | ∃s : X → G continuous, φ(x) = T s(x)(x)}.

This group is the restriction of a larger group introduced as an
invariant of orbit equivalence.

In the case of a subshift it can be interpreted as a group of
abstract Turing machines which are globally reversible and do not
change the tape.
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Motivation

s( ) = (1, 1)

T
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Motivation

It might be a good idea to understand these groups from a
computability point of view:

Definition (three problems)
Let G = 〈S | R〉 be a finitely generated group.

Word problem: Given w ∈ S∗, is w the identity of the
group?
Torsion problem: Given w ∈ S∗, is there n ∈ N such that
wn is the identity of the group?
Finiteness problem: Given w1, . . . ,wk ∈ S∗, is the group
generated by them finite?

The real problem is that [[σ]] and Aut(X ) in general are not
finitely generated...
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Two weird examples

B K ⊂ N be r.e. but undecidable.

Example 1: decidability depends on the presentation.

G ∼= 〈{an}n∈N | {[an, am]}n,m∈N ∪ {(ak)2}k∈K 〉
∼= 〈{bn}n∈N | {[bn, bm]}n,m∈N ∪ {(b`)2}` is even 〉.

Example 2: No presentation with decidable WP, all f.g. subgroups
have decidable WP.
B {pn}n∈N = primes 1 mod 4.
B {qn}n∈N = primes 3 mod 4.

G = 〈{an}n∈N | {[an, am], (an)pnqn}n,m∈N ∪ {(ak)pk}k∈K 〉.
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Some results

Theorem (B-Kari-Salo, 2016)
For any finite alphabet A with at least two symbols, Aut(AZ)
contains a finitely generated subgroup with undecidable torsion
problem.

Theorem (B-Kari-Salo, 2016)

The same is true for the topological full group of (AZd
, σ) if and

only if d ≥ 2.
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Perspectives

Short and middle term
Simulation theorem G × Z or G × H for expansive actions.
Strongly aperiodic subshifts in products G1 × G2? (with
WP(Gi) decidable)
Minimal effectively closed strongly aperiodic subshifts?
Other applications: entropies of SFTs, realize mixing
conditions, etc.
Study unavoidable sets of patterns.
Dynamical proof of Higman’s theorem.
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Perspectives (wishes)

Long term (related to this talk)
Characterize the groups which admit strongly aperiodic SFTs.
Characterize the entropies of SFTs on f.g. groups (amenable...
or maybe sofic).

Long term (unrelated to this talk)
The equal entropy SFT cover problem.
Domino problem for f.g. groups
Better understand conjugacy of automorphism groups: the
Aut({0, 1}Z) vs Aut({0, 1, 2}Z) problem.
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Thank you for your attention!

Merci pour votre attention !

¡Gracias por su atención!
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