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G-subshifts

Consider a group G.
» A is a finite alphabet. Ex : A= {0, 1}.
» AC is the set of functions x : G — A.
> o0: G x A® — AC is the shift action given by :

og(xX)h = Xg-14.
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og(xX)h = Xg-14.

Definition : G-subshift

X C AC is a G-subshift if it is invariant under the action of o and
closed for the product topology on A°.

| A

Alternative definition : G-subshift

X is a G-subshift if it can be defined as the set of configurations
which avoid a set forbidden patterns : 3F C Urc g Fl<oo AF such
that :

X=Xr={x€cA®|Vpe F:pix}
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Example in Z? : Fibonacci shift

Example : Fibonacci shift. Xg;, is the set of assignments of Z?2
to {0,1} such that there are no two adjacent ones.
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Example : one-or-less subshift

Example : one-or-less subshift.

Xap = {xe{0,1}% | {z €z x, =1} < 1}.
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Subshifts of finite type.

» What about if we only consider local rules?

Definition : subshift of finite type.

A G-subshift is of finite type (SFT) if it can be defined by a finite
set F of forbidden patterns.

Example : Both Fibonacci subshifts shown before are of finite
type. X<1 isn't.
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Subshifts of finite type.

» What about if we only consider local rules?

Definition : subshift of finite type.

A G-subshift is of finite type (SFT) if it can be defined by a finite
set F of forbidden patterns.

Example : Both Fibonacci subshifts shown before are of finite
type. X<1 isn't.

» Given a finite set of forbidden patterns, can we decide if the
G-subshift produced by them is non-empty ?
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The domino problem.

» Every finite alphabet can be identified as a finite subset of N.

Domino problem.

DP(G) = {F C Ng | |F| < o0, Xr # 0}.
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» if G is finitely generated by the set S, we can codify each
pattern as a function from a finite set of words in (SUS™1)* to N.
» Therefore, DP(G) can be written as a formal language. We say
G has decidable domino problem if DP(G) is Turing-decidable.
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The domino problem.

» Every finite alphabet can be identified as a finite subset of N.

Domino problem.

DP(G) = {F C Ng | |F| < o0, Xr # 0}.

» if G is finitely generated by the set S, we can codify each
pattern as a function from a finite set of words in (SUS™1)* to N.
» Therefore, DP(G) can be written as a formal language. We say
G has decidable domino problem if DP(G) is Turing-decidable.
Question : Which groups have decidable domino problem ?
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The easy case G = Z.

The set of configurations of a Z-SFT can be characterized as the
set of bi-infinite walks in a finite graph.
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set of bi-infinite walks in a finite graph.

Example : Consider the Fibonacci shift given by F = {11}.
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The easy case G = Z.

The set of configurations of a Z-SFT can be characterized as the
set of bi-infinite walks in a finite graph.

Example : Consider the Fibonacci shift given by F = {11}.

01

o (10 ) ()

10

As the graph is finite, a Z-SFT is non-empty if and only if its
Rauzy graph contains a cycle, thus DP(Z) is decidable.
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The not so easy case : G = Z?

The name "Domino problem" comes from the G = Z? case.
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The not so easy case : G = Z?

The name "Domino problem" comes from the G = Z? case.
Wang tiles are unit squares with colored edges, the forbidden
patterns are implicit in the alphabet.

XXX
IXIXIXTXIX XX D

X DY D GO0 000.00

K X X 00.090.0.9.0.0.0.
X X K XXX S
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Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be
arranged to do so periodically.
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Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be
arranged to do so periodically.

If Wang's conjecture is true, we can decide if a set of Wang tiles
can tile the plane!

Semi-algorithm 1 :
@ Accept if there is a periodic configuration.
© loops otherwise

Semi-algorithm 2 :

© Accept if a block [0, n]? cannot be tiled without breaking local
rules.

@ loops otherwise
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Wang's conjecture

Theorem|[Berger 1966]
Wang's conjecture is FALSE
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Wang's conjecture

Theorem|[Berger 1966]
Wang's conjecture is FALSE

—

His construction encodes a Turing machine using an alphabet of
size 20426.

His proof was later simplified by Robinson[1971]. A proof with a
different approach was also presented by Kari[1996].
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Robinson tileset

The Robinson tileset, where tiles can be rotated.
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General structure of the Robinson tiling
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General structure of the Robinson tiling

Macro-tiles of level 1.

%j%
n

They behave like large ]
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2

e
EEsissedi]

iFE

13/29



From macro-tiles of level 1 to macro-tiles of level 2
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Some recent results and facts in f.g. groups

» If a group G has undecidable word problem = DP(G) is
undecidable.

» Virtually free groups have decidable domino problem.

» For virtually nilpotent groups : DP(G) is decidable if and only
if it has two or more ends (2013 Ballier, Stein).

» Every virtually polycyclic group which is not virtually Z has
undecidable domino problem (work in progress by Jeandel).

» The domino problem is a quasi-isometry invariant for finitely
presented groups (2015 Cohen).
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Going between Z and Z? (Joint work with M. Sablik)

So far we have :
» DP(Z) is decidable.
» DP(Z2) is undecidable.

And if H < Z?, then either H 2 1,H = Z or H = Z2.
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Going between Z and Z? (Joint work with M. Sablik)

So far we have :
» DP(Z) is decidable.
» DP(Z2) is undecidable.

And if H < Z?, then either H 2 1,H = Z or H = Z2.

We need to lose the group structure if we want to study
intermediate structures.
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Toy case : Sierpinski triangle
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Coding subsets of Z? as configurations.

Let F C Z2 and define the configuration x¢ € {0,1}%" :

(x¢) lifze F
XF)y =
d 0 if not.

And let Y = J,cz2 {o-(xF)}-
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Coding subsets of Z? as configurations.

Let F C Z2 and define the configuration x¢ € {0,1}%" :

(x¢) lifze F
XF)y =
d 0 if not.

And let Y = J,cz2 {o-(xF)}-

Given a set of forbidden patterns F we can define colorings of F as
the configurations of Xr over an alphabet A > 0 such that the
application 7 : AZ — {0,1}% :

lifx,#0
m(x); = .
Oifx, =0

yields an element of Y.
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Formally...

> Let Y 5 0% be a Z2-subshift over the alphabet {0,1}.

» Let F be a set of forbidden patterns over an alphabet A >0
which does not forbid any pattern consisting only of 0.
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Formally...

> Let Y 5 0% be a Z2-subshift over the alphabet {0,1}.

» Let F be a set of forbidden patterns over an alphabet A >0
which does not forbid any pattern consisting only of 0.

Definition : Y-based subshift

The Y-based subshift defined by F is the set :

Xy F = 7['71(Y) N Xr.

4

Definition : Y-based domino problem

DP(Y) := {F C N& | | F| < o0 and Xy 7 # {0%}}.
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Back to the fractal structures...

We focus on subshifts Y with a self-similar structure generated by
substitutions.
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Back to the fractal structures...

We focus on subshifts Y with a self-similar structure generated by
substitutions.

» If Y contains a strongly periodic point which is not 0% then
DP(Y') is undecidable.

» It is easy to calculate a Hausdorff dimension (in this case
box-counting dimension). Is there a threshold in the dimension
which enforces undecidability ?

» These subshifts can be defined by local rules (sofic subshifts)
according to Mozes Theorem.
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Back to the fractal structures...

We focus on subshifts Y with a self-similar structure generated by
substitutions.

» If Y contains a strongly periodic point which is not 0% then
DP(Y') is undecidable.

» It is easy to calculate a Hausdorff dimension (in this case
box-counting dimension). Is there a threshold in the dimension
which enforces undecidability ?

» These subshifts can be defined by local rules (sofic subshifts)
according to Mozes Theorem.

In particular we consider : substitutions over {0,1} such that the
image of O is a rectangle of zeros.
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Example 1 : Sierpinski triangle

Consider the alphabet A = { ,m} and the self-similar substitution

s such that :
- and ®— ml
u
|}
|| .I=IE
.= uE =l
g || . ANEE | EENERENE
e R H us
| [ | ] Al EE H

|| EEEE EEEE
ENEEEREE sl = =B =B

EEEEE
EEEENENENENEREN
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Example 2 : Sierpinski carpet
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Example 3 : The Bridge.

INEEEEEEE
INEEENEEE
L [ | [
A — u — [ ] —_—
HEn [ [ [ |
INEEEEEEE
EEEEEEEEN
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Toy case 1 : Sierpinski triangle.
The domino problem is decidable in the Sierpinski triangle.
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The domino problem is decidable in the Sierpinski triangle.

Proof strategy :

» Consider a rectangle containing the union of the support of all
forbidden patterns.
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three tilings of the iteration n without producing forbidden
patterns.
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Toy case 1 : Sierpinski triangle.
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Toy case 1 : Sierpinski triangle.
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Toy case 1 : Sierpinski triangle.
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Toy case 1 : Sierpinski triangle.

L
)
-
u
uE _m
)
EEEEEEN
L
L
L L
-
RN L
L L
)
- -
u u
uE _m uE _m
) )
IR IR
- L - L
u ) u )
aEnE ) aEnE L
) )
EE NN NN NN NN NN NN
EEE NN EEEEEEENE N EE

24/29



Toy case 1 : Sierpinski triangle.
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Toy case 1 : Sierpinski triangle.

The domino problem is decidable in the Sierpinski triangle.

Proof strategy (continued) :

» Keep the information about the pasting places (finite tuples)
and build pasting rules (T1, T2, T3) — Ta.
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the pasting places. Construct the next set using this one.

» This process either cycles (arbitrary iterations can be tiled) or
ends up producing the empty set (the only valid tiling is 022).
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Toy case 1 : Sierpinski triangle.

The domino problem is decidable in the Sierpinski triangle.

Proof strategy (continued) :

» Keep the information about the pasting places (finite tuples)
and build pasting rules (T1, T2, T3) — Ta.

» For each iteration n, construct the set of tuples observed in
the pasting places. Construct the next set using this one.

» This process either cycles (arbitrary iterations can be tiled) or
ends up producing the empty set (the only valid tiling is 022).

This technique can be extended to a big class of self-similar
substitutions !
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Toy case 2 : Sierpinski carpet.

The domino problem is undecidable in the Sierpinski carpet.

Proof strategy :

» Suppose we can simulate substitutions over the Sierpinski
carpet (using a bigger alphabet).
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Toy case 2 : Sierpinski carpet.

do
o< o
T ot

[ ] i—} [ ]
<
I

> > <
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Toy case 2 : Sierpinski carpet.

[ I e dh = I o ]

tote el 1
[ IR IR R R B
Tl ted
t 1 t 1
ted ted
[ IR IR e AR e B
tote o1 1

(e I e dh o a ]
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Toy case 2 : Sierpinski carpet.

!
!
7
!
!

dl a2 asz as
by by b3 ba
C1 C2 C3 Ca
dv do d3 da

[

Te o1 ¢

T

T
T
T
T

0 <> @ <LHH> @

T el

T o
T
T

[ ]
<

T
LR

< @ KH<r<> e

T
T
T

.t

T e

@< @<L 0 <> @

d1 a2 a2 a3 a3z a3 asz a4 a4

b1 b2 * * b3 b4
b1 by by bz bz bs bz by ba
Cl1 * ¢ C3 % C4
C1 (e} C3 Cs
Ci * ¢ C3 % Ca

C1C2C2C3C3C3C3C C
di dr % * ds dy
didodrd3dz ds dz dy da
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Toy case 2 : Sierpinski carpet.

The domino problem is undecidable in the Sierpinski carpet.

Proof strategy :

» Suppose we can simulate substitutions over the Sierpinski
carpet (using a bigger alphabet).

@ Use the substitution shown above to simulate arbitrarily big
patterns of a Z2-subshift
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Toy case 2 : Sierpinski carpet.

The domino problem is undecidable in the Sierpinski carpet.

Proof strategy :

» Suppose we can simulate substitutions over the Sierpinski
carpet (using a bigger alphabet).

@ Use the substitution shown above to simulate arbitrarily big
patterns of a Z2-subshift

@ DP(Z?) is reduced to the domino problem in the carpet.

It only remains to show that we can simulate substitutions with
local rules.
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Toy case 2 : Sierpinski carpet and Mozes

We need to prove a modified version of Mozes' theorem :

Theorem : Mozes.

The subshifts generated by Z2-substitutions are sofic (are the
image of an SFT under a cellular automaton)

We can prove a similar version for some Y-based subshifts. Among
them the Sierpinski carpet.
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Toy case 2 : Sierpinski carpet and Mozes
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Conclusion

We can generalize the ideas in the previous toy problems to attack
classes of substitutions :
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Conclusion

We can generalize the ideas in the previous toy problems to attack
classes of substitutions :

Bounded Connectivity

Decidable domino problem
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Conclusion

We can generalize the ideas in the previous toy problems to attack
classes of substitutions :

Strong grid

H _EH B [
EREEE EEE EEE

H N BEEEEN
EEEEE BEEEER
H N EER I=I
Undecidable domino problem
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Conclusion

And separate the substitutions which we cannot classify into two
groups :
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Conclusion

And separate the substitutions which we cannot classify into two
groups :

Isthmus
[ |

27/29



Conclusion

And separate the substitutions which we cannot classify into two
groups :
Weak grid

Unknown
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Weak grid

We got some ideas of how it might be...
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[sthmus

We don't know anything about this one.

29/29



Conclusion

And about the Hausdorff dimension ?...
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Conclusion

And about the Hausdorff dimension ?...
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There is no threshold.
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Thank you for your attention !
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