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Z-Subshifts

I A is a finite alphabet. Ex : A = {0, 1}.
I AZ is the set of functions from Z to A
I ‡ : Z ◊ AZ æ AZ is the shift action given by :

‡k(x)i = xi+k .

Definition : Z-subshift
X µ AZ is a Z-subshift if and only if it is invariant under the
action of ‡ and closed for the product topology on AZ.

Alternative definition : Z-subshift
X is a Z-subshift if and only if it can be defined as the set of
bi-infinite words which avoid a set forbidden words : ÷F µ Aú such
that :

X = XF := {x œ AZ | ’w œ F : w ”@ x}.
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Z-Subshift examples
Example : full shift. Let A = {0, 1} and F = ÿ. Then XF = AZ

is the set of all bi-infinite words.

Example : Fibonacci shift. Let A = {0, 1} and F = {11}. Then
XFib is the set of all bi-infinite words which have no pairs of
consecutive 1’s.

x = . . . 010100010100100100100 · · · œ XFib
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Consider the Thue-Morse morphism 0 æ 01 and 1 æ 10.

0 æ 01 æ 0110 æ 01101001 æ 0110100110010110 æ ...
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Example : full shift. Let A = {0, 1} and F = ÿ. Then XF = AZ

is the set of all bi-infinite words.
Example : Fibonacci shift. Let A = {0, 1} and F = {11}. Then
XFib is the set of all bi-infinite words which have no pairs of
consecutive 1’s.

x = . . . 010100010100100100100 · · · œ XFib

Example : Thue-Morse subshift Consider the morphism 0 æ 01
and 1 æ 10. The Thue-Morse subshift XTM is the set of bi-infinite
sequences such that every subword appears as a substring in some
iteration of the morphism.

x = . . . 101001100101101001011001101001 · · · œ XTM
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Periodicity

Definition : periodic point
We say x œ X is periodic if there exists z œ Z \ {0} such that :

‡z(x) = x

Example : period 4

x = . . . 1110111011101110111011101 · · · = (0111)Œ

Definition : aperiodic Z-subshift
We say X µ AZ is aperiodic if for every configuration x œ X then
x is not periodic.
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Periodicity examples

Example : full shift. The full-shift over {0, 1} cannot be
aperiodic, it contains for example the constant configuration 0Œ.

Example : Fibonacci shift. The Fibonacci shift is also not
aperiodic, it contains for example :

x = . . . 0101010101010101 · · · = (01)Œ œ XF

Example : Thue-Morse subshift The Thue-Morse subshift is
indeed aperiodic !
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Aperiodicity of the Thue-Morse subshift

Recall the Thue-Morse morphism that acts by 0 æ 01 and 1 æ 10.

0 æ 01 æ 0110 æ 01101001 æ 0110100110010110 æ ...

Property :
The Thue-Morse sequence is cube-free.

Suppose there is x œ XTM and z œ Z \ {0} such that ‡z(x) = x .
Then x |{1,2,...,3|z|} is a cube-word, therefore not contained in any
iteration of the morphism. This yields a contradiction.
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Subshifts of finite type.

I What about if we only consider local rules ?

Definition : subshift of finite type.
A Z-subshift is of finite type (SFT) if it can be defined by a finite
set F of forbidden words.

Example : Both the full-shift and the Fibonacci shift are of finite
type.

I What can we say about periodicity ? Is the Thue-Morse subshift
of finite type ?
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Subshifts of finite type.

Theorem :
The set of configurations of a Z-SFT can be characterized as the
set of bi-infinite walks in a finite graph.

Example : Consider the Fibonacci shift given by F = {11}.

0 100

01

10
As the graph is finite, an SFT X is non-empty if and only if the
graph contains a cycle, thus every Z-SFT contains periodic
configurations !
Therefore, the Thue-Morse subshift is not of finite type.
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Subshifts in Z2
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Z2-Subshifts

Now configurations are on the plane.
I AZ2 is the set of functions from Z2 to A
I ‡ : Z2 ◊ AZ2 æ AZ2 is the shift action given by :

‡k(x)i = xi+k .

Instead of a set of forbidden words, we have a set of forbidden
patterns. In the same way as in Z, a Z2-subshift is of finite type if
it is defined by a finite set of forbidden patterns.

Are there any aperiodic Z2
-SFTs ?
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Example in Z2 : Fibonacci shift
Example : Fibonacci shift. XFib is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Wang’s conjecture

Wang’s conjecture
There are no non-empty aperiodic Z2-SFT.

Note : Wang actually formulated an equivalent version using
square colored tiles (Wang tiles)

Theorem[Berger 1966]
Wang’s conjecture is FALSE

His construction encodes a Turing machine using an alphabet of
size 20426.

His proof was later simplified by Robinson[1971].
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Robinson tileset

The Robinson tileset, where tiles can be rotated.
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Existence of a valid tiling

Proposition
Robinson’s tileset admits at least one valid tiling.

Macro-tiles of level 1.

They behave like large .
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level n to macro-tiles of level n + 1

∆

One can thus construct a valid tiling by a compacity argument.
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This valid tiling is aperiodic

Proposition
The valid tiling x obtained by compactness is aperiodic.

Proof :

Centers of macro-tiles of level n are located a
2n+1Z ◊ 2n+1Z-lattice.
Suppose x admits a direction of periodicity ≠æ

u .
Then there exists an integer n s.t. 2n+1 > Î≠æ

u Î.
Thus a macro-tile of level n overlaps with its translation.
∆ contradiction.
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All valid tilings are aperiodic (I)
The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).

Obviously, two crosses cannot be in contact (neither through an
edge nor a vertex) hence a cross must be surrounded by eight
arms.
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All valid tilings are aperiodic (II)

You cannot have things like

The only possibilities are
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All valid tilings are aperiodic (II)
You cannot have things like

The only possibilities are
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All valid tilings are aperiodic (III)
So each is part of a macro tile of level 1

that behaves like a big , and so on. . .

19/31



Aperiodicity of the Robinson tiling

Therefore, any configuration in the Robinson tiling contains
arbitrary level macro-tiles and the previous argument shows they
cannot have any periodic behavior.

Therefore, there exist non-empty aperiodic Z2-SFTs.

So far, we have shown...

I Z-SFTs are never aperiodic.
I There exist aperiodic Z2-SFTs. (1966 Berger, 1971 Robinson,

1996 Kari)
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Subshifts in finitely generated groups
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Finitely generated groups

Now configurations are on a group G .
I AG is the set of functions from G to A
I ‡ : G ◊ AG æ AG is the shift action given by :

‡g(x)h = xg≠1h.

G-subshifts are defined analogously.

Are there any aperiodic G-SFTs ?

There is no general characterization of which groups admit
aperiodic SFTs.
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Some recent partial results

I There are weakly aperiodic SFTs in Baumslag Solitar groups
(2013 Aubrun-Kari)

I There are aperiodic SFTs in the Heisenberg group (2014
Sahin-Schraudner)

I The existence of an aperiodic SFT in G implies that G is one
ended (2014 Cohen)

I The existence of an aperiodic SFT is a quasi-isometry
invariant for finitely presented torsion-free groups. (2014
Cohen)

I A recursively presented group which admits an aperiodic SFT
has decidable word problem (2015 Jeandel)
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Some recent partial results

It is even hard to come up with examples of aperiodic subshifts in
general groups if we retreat the finite type property of the list of
forbidden patterns.

Question by Glasner and Uspenskij 2009
Is there any countable group which does not admit any aperiodic
subshift on a two symbol alphabet ?

Theorem by Gao, Jackson and Seward 2009
No. All do.

And the proof is a quite technical construction.
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However...

However ! It is possible to show the same result by using tools from
probabilities and combinatorics.

Theorem by Aubrun, B, Thomassé
No. All do.

But now the proof is short. It uses the asymmetrical version of
Lovász Local Lemma.
We will present here a slightly di�erent version which uses a
generalization of square free words. It will only work for finitely
generated groups and it will use a larger alphabet.
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Lovász Local Lemma

Lovász Local Lemma (Asymmetrical version)
Let A := {A1, A2, . . . , An} be a finite collection of measurable sets
in a probability space (X , P, B). For A œ A , let �(A) be the subset
of A such that A is independent of the collection
A \ ({A} fi �(A)). Suppose there exists a function x : A æ (0, 1)
such that :

’A œ A : P(A) Æ x(A)
Ÿ

Bœ�(A)
(1 ≠ x(B))

then the probability of avoiding all events in A is positive, in
particular :

P

A

X \
n€

i=1
Ai

B

Ø
Ÿ

AœA

(1 ≠ x(A)) > 0.

25/31



Back to Thue-Morse

Recall the Thue-Morse morphism 0 æ 01 and 1 æ 10.

0 æ 01 æ 0110 æ 01101001 æ 0110100110010110 æ ...

It is not hard to modify it so that it avoids squares.

0 æ 01210
1 æ 12021
2 æ 20102

0 æ 01210 æ 0121012021201021202101210...

We can interpret this sequence of words as colorings without
squares over a path graph.
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Square-free vertex coloring

Square-free vertex coloring
Let G = (V , E ) be a graph. A vertex coloring is a function
x : V æ A. We say it is square-free if for every odd-length path
p = v1 . . . v2n then there exists 1 Æ j Æ n such that
x(vj) ”= x(vj+n).

C5 has a square-free vertex coloring with 4 colors, but not with 3.
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Square-free vertex coloring

For our purposes, we are interested in coloring infinite graphs. This
can not always be done with a finite number of colors : KN.

Theorem : Alon, Grytczuk, Haluszczak and Riordan
Every finite graph with maximum degree � can be colored with
2e

16�2 colors.

It is possible to adapt the proof in order to obtain the following :
Let G be a group which is generated by a finite set S and let
�(G , S) = (G , {{g , gs}, g œ G , s œ S}) be its undirected right
Cayley graph.

Theorem
G admits a coloring of its undirected Cayley graph �(G , S) with
219|S|2 colors.
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Proof sketch

Choose a coloring of the graph uniformly :
’g œ G , a œ A, P({x œ A�(G,S) | xg = a}) = 1/|A|.

The probability of the event : Ap : a configuration has a
square path p of length 2n ≠ 1 is |A|≠n.
Setting x(Ap) = (8|S|2)≠n for a path of length 2n ≠ 1 satisfies
LLL if |A| > 219|S|2.
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The construction
Let |A| Ø 219|S|2 and X µ AG be the subshift such that every
square in �(G , S) is forbidden.

The previous result implies that X ”= ÿ.
Let g œ G such that ‡g(x) = x for some x œ X .
Factorize g as uwv with u = v

≠1 and |w | minimal (as a word
on (S fi S

≠1)ú). If |w | = 0, then g = 1.
If not, let w = w1 . . . wn and consider the odd length walk
fi = v0v1 . . . v2n≠1 on �(G , S) defined by :

vi =

Y
__]

__[

1 if i = 0
w1 . . . wi if i œ {1, . . . , n}
ww1 . . . wi≠n if i œ {n + 1, . . . , 2n ≠ 1}

One can prove that fi is a path. and that xvi = xvi+n . Yielding
a contradiction.
Therefore, g = 1.
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Conclusion

What we have shown here :
Every finitely generated group admits a non-empty aperiodic
subshift over (a big) alphabet.

Actually, we can prove the original result and add some extra spice.

Theorem : Aubrun, B, Thomassé
Every countable group G admits a non-empty aperiodic subshift
over {0, 1}. Moreover, if G is finitely generated and has decidable
word problem then the subshift is defined by a recursively
enumerable set of forbidden patterns

Is is possible to use this construction to produce aperiodic SFTs ?
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Merci beaucoup pour votre attention !
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