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Abstract

We provide an example of a non-finitely generated group which admits a nonempty strongly

aperiodic SFT. Furthermore, we completely characterize the groups with this property in terms of

their finitely generated subgroups and the roots of their conjugacy classes.
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Let A be a finite set and G a group with identity 1. Consider the set of configurations AG =

{x : G→ A} endowed with the left shift action G y AG given by

(gx)(h) = x(g−1h) for every x ∈ AG and g, h ∈ G.

A set X ⊂ AG is called a subshift of finite type (SFT) if there exists a finite set F ⊂ G and

L ⊂ AF such that x ∈ X if and only if for every g ∈ G we have that the restriction of gx to F is in

L. An SFT can be though of as a set of colorings of G using colors from A which satisfy a finite set

of local rules encoded by L.

An SFT X is called strongly aperiodic (SA) if the shift action is free, namely, given x ∈ X we

have that gx = x can only hold for g = 1. Clearly X = ∅ is SA, but this case is not very interesting.

This definition begs the question of whether nonempty SA SFTs actually exist and the answer turns

out to depend on which group G we are considering.

Let us illustrate the failure of the existence of nonempty SA SFT in the case G = Z. Given A,F and

L which define an SFT X we may assume without loss of generality that F is of the form {0, . . . , n−1}
for some n ≥ 1. Consider the finite directed graph with vertices An+1 and such that there is an edge

from u0 . . . un to v0 . . . vn if and only if u1 . . . un = v0 . . . vn−1 ∈ L. It is clear that the elements of X

are precisely the projections of the bi-infinite walks in this graph to the first symbol in each coordinate

(for further details, see [17]). If X is nonempty, it follows that the graph must contain a cycle, say of

length m > 0, and consequently there must exist x ∈ X for which mx = x, showing that X is not SA.

The case of G = Z2 is much more interesting. In [20] Wang studied the algorithmic problem

of deciding, given as inputs A,F and L whether the SFT X they define is empty or not1. Wang

did not solve this problem but showed that if Z2 does not admit any nonempty SA SFT, then the

problem would be algorithmically decidable. Years later Berger solved the problem [7] showing that it

was algorithmically undecidable, and in doing so constructed the first known example of a nonempty

SA SFT in Z2. After this breakthrough, several beautiful SA SFTs on Z2 have been constructed,

see [15, 16, 19].

1To be rigorous, Wang studied an equivalent problem where the SFT is described by square tiles with colored edges
and in any tiling of Z2 the colors at the edges must match.
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In recent years the problem of classifying the groups which admit a nonempty SA SFT has gained

notoriety. This has led to wonderful discoveries that relate this property with the algorithmic and

geometric properties of groups. For instance, the property of admitting a nonempty SA SFT is invariant

under commensurability [8] and under quasi-isometries of finitely presented groups [9]. It is also known

that finitely generated groups with infinitely many ends (in particular, virtually free groups) cannot

admit nonempty SA SFTs [9], and that finitely generated and recursively presented groups which

admit SA SFTs must necessarily have decidable word problem [13]. Within the groups that satisfy

these constraints, several are known to admit SA SFTs. For instance polycyclic-by-finite groups which

are not virtually cyclic [3, 14], one-ended word-hyperbolic groups [10, 11], some Baumslag-Solitar

groups [1, 2, 12], groups of the form ZdoϕG with d ≥ 2, ϕ ∈ GLd(Z) and G infinite, finitely generated

and with decidable word problem [5], groups which are the direct product of three infinite, finitely

generated groups with decidable word problem [4], the Grigorchuk group, and more generally, any

finitely generated branch group with decidable word problem [4], and any self-simulable group with

decidable word problem such as Thompson’s V , GLn(Z) and SLn(Z) for n ≥ 5, or the direct product

of any two finitely generated non-amenable groups with decidable word problem [6].

A common point shared by all the existence results mentioned above is that they apply to finitely

generated groups. For obvious reasons this is not very surprising: if X ⊂ AG is an SFT on a group

G described by L ⊂ AF and H = 〈F 〉 is the subgroup of G finitely generated by F , we may consider

instead Y ⊂ AH as the SFT which is defined by L but on H. It turns out that configurations in X

can be seen as independent copies of configurations of Y on each coset of H.

Proposition 1. Let H 6 G, F ⊂ H finite, L ⊂ AF and let X,Y be the SFTs defined by L on G and

H respectively. Let (gi)i∈I be a set of left coset representatives of H in G. Then x ∈ X if and only if

for every i ∈ I we have yi = (x(gih))h∈H ∈ Y .

Proof. Let x ∈ X and i ∈ I. For every u ∈ H we have (uyi)(h) = yi(u
−1h) = x(giu

−1h) = (ug−1i x)(h).

As x ∈ X, it follows that (ug−1i x)|F ∈ L and thus (uyi)|F ∈ L and yi ∈ Y . Conversely, suppose yi ∈ Y

for every i ∈ I and let g ∈ G. We may choose i ∈ I and v ∈ H such that g−1 = giv and thus we have

(gx)(h) = (v−1g−1i x)(h) = x(givh) = yi(vh) = (v−1yi)(h) for every h ∈ H. As yi ∈ Y , it follows that

v−1yi|F ∈ L and thus gx|F ∈ L, showing that x ∈ X.

Based on the former argument, one should expect that non-finitely generated groups would have

a hard time admitting nonempty SA SFTs, as one could always pick the same configuration on each

coset and use that to create periodicity. Let us exemplify that this intuition is wrong with a real world

situation.

Let us suppose the reader is walking on the street, while suddenly they get jumped by a thief who

demands: “Quickly! give me an example of a non-finitely generated group which admits a nonempty

SA SFT or I shall take your wallet!”. The reader, scared by the gravity of the situation, might wrongly

answer that such examples do not exist by explaining the argument above. The thief, with a victorious

grin on their face, would take out their portable blackboard and write down the following example.

Example 2. Consider G = Q2 and let Y ⊂ AZ2

be a nonempty SA SFT. Let X ⊂ AQ2

be given by

the condition

x ∈ X if and only if (sx)|Z2 ∈ Y, for every s ∈ Q2.

As Y is a nonempty SFT, it follows that X is a nonempty SFT. For q ∈ Q2, we may write q =
(

p1

r1
, p2

r2

)
with p1, p2, r1, r2 ∈ Z and r1r2 6= 0. It follows that r1r2q ∈ Z2. Now suppose we have qx = x, then we

also have (r1r2q)x = x and from the fact that x|Z2 ∈ Y , we obtain that necessarily r1r2q = (0, 0). As

r1r2 6= 0, we deduce that q = (0, 0) and thus X is SA. #
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Faced with this example, the reader would have no other choice but to surrender their wallet to

the thief. The argument for nonexistence sketched above is incomplete: while it is true that one

may choose independently any configuration in every coset, it may happen that powers of the coset

representatives end up inevitably falling on a non-trivial element of the finitely generated subgroup and

thus destroy any global translational symmetry. As we shall show, it turns out that modulo conjugacy

this is essentialy the sole way that SA SFTs can arise in non-finitely generated groups. In fact, we

shall show that global aperiodicity may arise even if the subshift in the finitely generated subgroup is

not strongly aperiodic.

For an SFT X ⊂ AG, define its free part as the set

Free(X) = G \
⋃
x∈X

StabG(x) = {g ∈ G : gx 6= x for every x ∈ X}.

In particular, a nonempty SFT X is SA if and only if Free(X) = G \ {1}. For a subset M ⊂ G, let

us denote the set of its roots in G by

RG(M) = {g ∈ G : there is n > 0 such that gn ∈M}.

Finally, given g ∈ G let us denote its conjugacy class by Cl(g) = {tgt−1 : t ∈ G}.

Proposition 3. Let H 6 G, F ⊂ H finite, L ⊂ AF and let X,Y be nonempty SFTs defined by L on

G and H respectively. We have that g ∈ Free(X) if and only if

Cl(g) ∩RG(Free(Y )) 6= ∅.

Proof. If g /∈ Free(X), then there exists x ∈ X such that gx = x. Suppose there is n > 0, h ∈ H and

t ∈ G such that gn = t−1ht. It follows that we would have t−1htx = gnx = x and thus htx = tx.

Letting z = tx, it follows that hz = z. As z ∈ X, it follows that if we let y = z|H ∈ Y we have hy = y

and thus h /∈ Free(Y ). This shows that Cl(g) ∩RG(Free(Y )) = ∅.

Conversely, let g ∈ G be such that Cl(g)∩RG(Free(Y )) = ∅ and choose (using the axiom of choice)

a set (`i)i∈I of left coset representatives of H. There is a unique well-defined permutation ϕ : I → I

which satisfies g`i = `ϕ(i)h for some h ∈ H. In particular, ϕ induces an action of Z on I given by

m · i = ϕm(i) for m ∈ Z and i ∈ I.

Choose (using the axiom of choice) J ⊂ I such that it contains exactly one representative of each

orbit of ϕ, that is, for every i ∈ I there is a unique j ∈ J such that i = ϕm(j) for some (non necessarily

unique) m ∈ Z. For n ∈ Z and j ∈ J let hn,j = `−1ϕn(j)g
n`j ∈ H.

We will now define a configuration x ∈ AG. Let y∗ ∈ Y be a fixed configuration and let j ∈ J ,

there are two cases to consider:

1. If {ϕm(j)}m∈Z is infinite, we let yj = y∗ and define x(`ϕm(j)s) = hm,jyj(s) = yj(h
−1
m,js) for every

s ∈ H and m ∈ Z.

2. If {ϕm(j)}m∈Z is finite, let n > 0 be the least positive integer such that ϕn(j) = j. As hn,j =

`−1j gn`j ∈ Cl(gn) it follows by our assumption that hn,j /∈ Free(Y ). Therefore there exists yj ∈ Y

such that hn,jyj = yj . We define x(`ϕm(j)s) = hm,jyj(s) = yj(h
−1
m,js) for every s ∈ H and m ∈ Z.

Notice that as hn,jyj = yj , this is well-defined.

By construction, we have that (x(`ih))h∈H ∈ Y for every i ∈ I and thus by Proposition 1 we have
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that x ∈ X. Let us show that gx = x. Indeed, for j ∈ J,m ∈ Z and s ∈ H we have

gx(`ϕn(j)s) = x(g−1`ϕn(j)s) = x(`ϕn−1(j)`
−1
ϕn−1(j)g

−1`ϕn(j)s)

As `−1ϕn−1(j)g
−1`ϕn(j) ∈ H, we obtain that x(`ϕn−1(j)`

−1
ϕn−1(j)g

−1`ϕn(j)s) = yj(h
−1
n−1,j`

−1
ϕn−1(j)g

−1`ϕn(j)s).

From here we obtain that

gx(`ϕn(j)s) = yj(h
−1
n−1,j`

−1
ϕn−1(j)g

−1`ϕn(j)s) = yj(h
−1
n,js) = x(`ϕn(j)s)

This shows that gx = x and thus we conclude that g /∈ Free(X).

The previous proposition tells us that we may determine whether a group admits a nonempty SA

SFT by just looking at its finitely generated subgroups.

Theorem 4. A group G admits a nonempty strongly aperiodic subshift of finite type if and only if

there exists a finitely generated subgroup H 6 G and a nonempty SFT Y ⊂ AH such that for every

g ∈ G \ {1} we have

Cl(g) ∩RG(Free(Y )) 6= ∅.

Proof. If X ⊂ AG is a nonempty SA SFT given by F ⊂ G finite and L ⊂ AF , then H = 〈F 〉
is a finitely generated subgroup and by Proposition 3 for every g ∈ Free(X) = G \ {1} we have

Cl(g) ∩ RG(Free(Y )) 6= ∅, where Y ⊂ AH is the nonempty SFT given by L on H. Conversely, if

H ≤ G is a finitely generated subgroup, Y ⊂ AH a nonempty SFT given by F ⊂ H finite and L ⊂ AF ,

and such that for every g ∈ G \ {1} we have Cl(g)∩RG(Free(Y )) 6= ∅, then again by Proposition 3 we

have that G \ {1} ⊂ Free(X) for the nonempty SFT X ⊂ AG induced by L on G. Thus X is SA.

Corollary 5. Let G be a group and H 6 G a finitely generated subgroup which admits a nonempty

strongly aperiodic SFT and such that for every g ∈ G \ {1} we have Cl(g) ∩ RG(H \ {1}) 6= ∅. Then

G admits a nonempty strongly aperiodic SFT.

Notice that for any nonempty subshift Y ⊂ AH we have Free(Y ) ⊂ H \ {1} and thus the condition

Cl(g) ∩RG(Free(Y )) 6= ∅ always implies that Cl(g) ∩RG(H \ {1}) 6= ∅. This trivial remark suggests

the question of whether there are any examples where X is SA but Y is not. The following example

due to Salo (also in an article by Jeandel [13] with a slightly different construction) shows that this

case can indeed occur.

Example 6. A result of Osin [18] shows that every countable torsion-free group can be embedded in

a 2-generated group with exactly two conjugacy classes. In particular there is a 2-generated group G

with two conjugacy classes and such that there is t ∈ G with 〈t〉 ' Z. Let A = {a, b}, F = {1, t} and

L = {(1 7→ a, t 7→ b), (1 7→ b, t 7→ a)}, that is, we let X ⊂ {a, b}G be the SFT which consists of all

maps for which x(gt) 6= x(g) for every g ∈ G.

Let Y ⊂ {a, b}〈t〉 be the SFT defined by F and L on 〈F 〉 ' Z. On the one hand, we have

that Y is nonempty and consists on the two periodic configurations which alternate symbols, thus

Free(Y ) = {t2n+1 : n ∈ Z} consists of the odd powers of t, in particular Y is not SA. On the

other hand, as there is only one non-trivial conjugacy class, we have that for every g ∈ G \ {1},
t ∈ Cl(g) ∩RG(Free(Y )) which is nonempty, and thus X is SA by Theorem 4. #
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