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Abstract

Let Γ be a sofic group, Σ be a sofic approximation sequence of Γ and X be a Γ-subshift with
nonnegative sofic topological entropy with respect to Σ. Further assume that X is a shift of finite
type, or more generally, that X satisfies the topological Markov property. We show that for any
sufficiently regular potential f : X → R, any translation-invariant Borel probability measure on
X which maximizes the measure-theoretic sofic pressure of f with respect to Σ, is a Gibbs state
with respect to f . This extends a classical theorem of Lanford and Ruelle, as well as previous
generalizations of Moulin Ollagnier, Pinchon, Tempelman and others, to the case where the group
is sofic.

As applications of our main result we present a criterion for uniqueness of an equilibrium
measure, as well as sufficient conditions for having that the equilibrium states do not depend upon
the chosen sofic approximation sequence. We also prove that for any group-shift over a sofic group,
the Haar measure is the unique measure of maximal sofic entropy for every sofic approximation
sequence, as long as the homoclinic group is dense.

On the expository side, we present a short proof of Chung’s variational principle for sofic
topological pressure.
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1 Introduction

The classical Lanford–Ruelle theorem [26] asserts that given a Zd-shift of finite type X and an
absolutely-summable, translation-invariant interaction Φ on X, any translation-invariant Borel prob-
ability measure which maximizes the measure-theoretic pressure with respect to Φ (that is, any equi-
librium state for the interaction Φ) is a Gibbs state with respect to Φ.

Various aspects of the Lanford–Ruelle theorem have been generalized by a number of authors. It
has been proven that any measure of maximal entropy for a Zd-shift of finite type is invariant with
respect to the asymptotic relation [11]. Also, the Lanford–Ruelle theorem has been extended to the
context where the acting group is any countable amenable group, not only Zd [32, 44], and even more
generally, to subshifts which satisfy a condition called the topological Markov property and with respect
to any random environment [7]. For an overview of these generalizations, we refer the reader to the
introduction of [7].

A fair amount of work related to Gibbs measures over finite graphs and their limits has been carried
out by the communities of mathematical physics and probability. In particular, Gibbs measures on
tree-like graphs such as d-regular expanders have been considered in [42, 30]. The emergence of sofic
entropy [9] and subsequent introduction of sofic pressure [16] provides a natural framework to study
equilibrium measures and their relation with Gibbs states in the context of actions of sofic groups. Let
us mention that this class of groups includes all countable amenable and residually finite groups, in
particular, it includes all free groups.

In this paper we fully generalize the Lanford–Ruelle theorem to the context where the lattice is an
arbitrary countable sofic group Γ and the space of configurations X has hard constraints that generalize
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the condition of being of finite type. More precisely, our theorem works for any subshift X ⊂ AΓ with
nonnegative sofic topological entropy which satisfies the topological Markov property.

Theorem A. Let Σ be a sofic approximation sequence for Γ, X be a subshift that satisfies the
topological Markov property such that hΣ(Γ y X) ≥ 0, Φ an absolutely-summable interaction on X
and µ an equilibrium measure on X for Φ with respect to Σ. Then µ is Gibbs with respect to Φ.

Some authors have already explored results that are related to the Lanford–Ruelle theorem beyond
amenable groups. For instance, Grigorchuk and Stepin [21] provide a sketch of proof for the exis-
tence of Gibbs measures on the full Γ-shift on residually finite groups for locally-constant potentials.
Many years later Alpeev [2, Theorem 1], showed that for any locally-constant potential on the full
Γ-shift (that is, no “hard constraints” or “forbidden patterns”) of a sofic group Γ, there exist Gibbs
measures and that furthermore, under certain conditions ensuring uniqueness, the value of a variant
of sofic topological pressure does not depend upon the sofic approximation sequence. Recent results
of Shriver [41] essentially show that the conclusion of the Lanford–Ruelle theorem for the full Γ-shift
holds with respect to finite-range interactions. Strictly speaking, Shriver’s paper considers only a cer-
tain class of finitely generated sofic groups, although this restriction is presumably just for simplicity
of exposition, where the generalization beyond full-shifts and beyond bounded range interactions does
require further arguments. We should mention that Shriver’s paper obtains additional related results
related to invariance with respect to the Glauber dynamics, which imply Gibbsianness and are outside
the scope of this work. Related objects have also been considered in [4], although the relation to sofic
entropy in this work is somewhat implicit.

We deduce Theorem A and a close variant of it (Theorem 5.11) as instances of the following slightly
more general result:

Theorem B. Let Σ be a sofic approximation sequence for Γ, X be a subshift such that hΣ(Γ y X) ≥ 0,
and let f ∈ C(X) be a ρT 0(X)-limit of locally constant functions. Then any equilibrium measure µ on
X for f with respect to Σ is étale Gibbs with respect to f .

We remark that Theorem B does not require any structural assumption on the subshift but provides
the conclusion of the measure being “étale Gibbs” instead of just Gibbs. Let us explain how this
statement is more general than Theorem A and Theorem 5.11:

1. As in [27], the statement of Theorem B applies meaningfully to shifts even without the topological
Markov property. The condition of being a Gibbs measure on X with respect to a suitable map
f : X → R can be stated in terms of the Radon-Nikodým cocycle of the measure with respect to
the relation T (X) induced by the asymptotic pairs on X. Following ideas from [27], we define
a subrelation T 0(X) which we call the étale asymptotic relation (called the topological Gibbs
relation in [27]) and define étale Gibbs measures as those which satisfy the Gibbs condition
with respect to this subrelation. It turns out that both notions of “Gibbs” coincide precisely
when the subshift satisfies the topological Markov property (Proposition 2.11). We show that
the conclusion of the Lanford–Ruelle theorem holds for any subshift as long as we replace the
condition of being Gibbs by being étale Gibbs.

2. The statement of Theorem B applies to a larger class of functions. More precisely, a sequence
(fn)n∈N of locally constant functions converges in the ρT 0(X)-metric to f ∈ C(X) if it converges
uniformly, and furthermore, the cocycles induced by the functions fn on the asymptotic Gibbs
relation T 0(X) converge to the cocycle induced by f on T 0(X). We show that functions generated
by absolutely-summable interactions (Theorem A) and functions which have summable-variation
with respect to a filtration of Γ (Theorem 5.11) satisfy this property.

An interesting observation related to our main result is that, while for non-amenable sofic groups
the notion of equilibrium measure depends upon a sofic approximation sequence, Gibbs measures do
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not. Therefore, if by some means one can show that a subshift X ⊂ AΓ with the topological Markov
property admits a unique Gibbs measure µ, then necessarily for every sofic approximation sequence
Σ such that hΣ(Γ y X) ≥ 0, we have that µ is translation-invariant and is the unique such measure
which maximizes the measure-theoretic sofic entropy hΣ(Γ y X) = hΣ(Γ y X,µ). We prove this
in Theorem 6.1.

In [16, Question 5.4] it was asked whether for every single-site potential there is a unique equilibrium
state on the full-shift over a countable sofic group. This question was answered positively in [10,
Example 7] and in [40, Corollary 3.6]. Our results also show that the answer is positive but through
the fact that there exists a unique translation-invariant Gibbs measure in that case.

Establishing a property of equilibrium measures that is independent of the sofic approximation
sequence is particularly relevant given a recent result of Airey, Bowen and Lin [1] which produces
a strongly irreducible subshift of finite type (and thus with the topological Markov property) on a
sofic group Γ for which two different sofic approximation sequences Σ1 and Σ2 of Γ yield two distinct
positive values of sofic topological entropy. If one were able to adapt their construction and produce a
system with a unique Gibbs measure, then one would actually be able to show that a single measure
can produce two distinct positive values of measure-theoretic sofic entropy with respect to distinct
sofic approximation sequences, a problem which is still open [1, Remark 2].

Another application of our result concerns the existence of Gibbs measures. For any sofic group,
any subshift of finite type which has nonnegative sofic topological entropy with respect to some sofic
approximation sequence admits at least one translation-invariant equilibrium state with respect to any
translation-invariant, absolutely-summable interaction (Theorem 6.2), in particular, our result shows
that these equilibrium states are Gibbsian. The previous statement generalizes the aforementioned
results of Grigorchuk and Stepin [21] and Alpeev [2, Theorem 1]. In fact, in our result the existence of
translation-invariant Gibbs states holds for any subshift with the topological Markov property, which
is more general than the finite type condition. We remark that the assumption of having finite sofic
topological entropy holds trivially in the case where the acting group is amenable, but in the non-
amenable case, the assumption cannot be completely removed. In particular, for any non-amenable
group there exist subshifts of finite type that admit no invariant measures, in which case the sofic
topological entropy is equal to −∞ for any sofic approximation sequence.

A further application of our theorem can be given whenever a subshift carries an additional algebraic
structure. More precisely, a group shift is a subshift whose alphabet is a finite group and which carries
a group structure induced by the alphabet. These algebraic subshifts always admit the Haar measure
as a translation-invariant Borel probability measure. We are able to show that for any group shift
defined on a sofic group for which its homoclinic group is dense (the group of elements in the subshift
which are asymptotic to the identity) then the Haar measure is the unique measure of maximal sofic
entropy (Theorem 6.3) with respect to every sofic approximation sequence for Γ.

Acknowledgements: The authors wish to thank Raimundo Briceño for drawing our attention
to Shriver’s work, Hanfeng Li for very helpful comments on a first version of this article and Andrei
Alpeev for suggesting reference [21]. We are also grateful to an anonymous referee for several helpful
comments. S. Barbieri was supported by the FONDECYT grant 11200037 and T. Meyerovitch was
supported by ISF grant 1058/18.

1.1 Organization of the paper

In Section 2 we provide all the necessary definitions and prove a few elementary results which relate
the asymptotic relation with the topological Markov property.

In Section 3 we recall the definition of sofic groups and sofic pressure, and provide proofs of a
few elementary structural results. We also provide a short self-contained proof of Chung’s variational
principle (Theorem 3.8).

The proof of our main theorem in the case where the function is locally constant is given in Section 4.
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The heart of the argument is an estimate for a “finite approximation of the pressure function on finite
models”, conveyed by Lemma 4.3. To handle a certain technical condition regarding periodicity, we use
a trick which involves taking a direct product of the original subshift with a full Γ-shift (Lemma 4.8).

In Section 5 we extend the main result of the previous section to functions which are not necessarily
locally constant in Theorem 5.3 (= Theorem B). Our argument uses tools from convex analysis and a
characterization of étale Gibbs measures in terms of tangent functionals for the sofic pressure function.
We also discuss the space of absolutely-summable interactions (Section 5.1) and the space of maps with
absolutely-summable variation (Section 5.2) and provide the proofs for Theorem 5.7 (= Theorem A)
and Theorem 5.11. In Section 6 we present in more detail the applications of our main theorem
discussed above. In section 7 we briefly discuss hypothetical extensions beyond sofic groups.

2 Preliminaries

2.1 Spin systems and shift spaces

Let A be a finite set, which we think of as “the allowable spins” or “the alphabet”, and let Γ be a
countable group, which will play the both the role of “the lattice” and the “spatial symmetries”. The
set AΓ = {x : Γ → A} is endowed with the product topology, where A is considered as a discrete
topological space. Elements of AΓ are called configurations. Given a configuration x ∈ AΓ we shall
denote its value at g ∈ Γ either by x(g) or xg.

A pattern with support F b Γ is an element p ∈ AF (we use the notation A b B to denote that
A is a finite subset of B). We denote by [p] = {x ∈ AΓ : x(g) = p(g) for every g ∈ F} the cylinder
generated by a pattern p. A space of configurations is a compact subset X ⊂ AΓ. For a space of
configurations X and F b Γ the set of X-admissible F -patterns is defined as:

PF (X) := {x|F : x ∈ X}.

We denote the set of all X-admissible patterns by P (X) :=
⋃
FbΓ PF (X).

The (left) shift action Γ y AΓ is given by

gx(h) := x(g−1h) for every g, h ∈ Γ and x ∈ AΓ.

Then Γ y AΓ is a topological dynamical system, which is known as the full Γ-shift over A.
A subset X ⊂ AΓ is a shift space or subshift if and only if it is Γ-invariant and closed in the product

topology. Equivalently, X is a subshift if and only if there exists a (possibly infinite) set of patterns F
such that

X =
{
x ∈ AΓ : gx /∈ [p], for every g ∈ Γ, p ∈ F

}
.

If X satisfies the equation above, we refer to F as a set of forbidden patterns or hard constraints
of X. Note that the set F above is not uniquely determined by X. A shift of finite type (SFT) is a
shift space X that can be defined by a finite set of forbidden patterns.

Given two (possibly infinite) subsets F, F ′ ⊂ Γ, p ∈ AF and q ∈ AF ′ such that p|F∩F ′ = q|F∩F ′ ,
we define their concatenation p∨ q as the map w : F ∪F ′ → A whose restrictions to F and F ′ coincide
with p and q respectively.

2.2 The (étale) asymptotic relation

Definition 2.1. We say that two patterns p, q ∈ AF are interchangeable in a subshift X ⊂ AΓ if for
every x ∈ AΓ we have

x|Γ\F ∨ p ∈ X if and only if x|Γ\F ∨ q ∈ X.
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Where x|Γ\F denotes the restriction of x to Γ\F . In words, p and q are interchangeable if occurrences
of p can be interchanged by q on any configuration without introducing any forbidden pattern and
vice-versa.

We denote the collection of interchangeable pairs of patterns with support F in AF ×AF by IF (X)
and by I(X) =

⋃
FbΓ IF (X) the collection of interchangeable pairs of patterns.

Definition 2.2. For a finite set F b Γ let

TF (X) :=
{

(x, x′) ∈ X ×X : x|Γ\F = x′|Γ\F
}

T (X) :=
⋃
FbΓ

TF (X).

Then T (X) is a Borel equivalence relation on X where each equivalence class is countable, which we
call the asymptotic relation on X. Some authors, for instance in [8, 27, 34], call T (X) the Gibbs
relation on X. We also define:

T 0
F (X) := {(x, x′) ∈ TF (X) : (x|F , x′|F ) ∈ IF (X)}.

T 0(X) :=
⋃
FbΓ

T 0
F (X).

The equivalence relation T 0(X) can be equivalently described as the orbit equivalence relation of the
countable group of homeomorphisms of X generated by the maps Ip,q : X → X which interchange
patterns (p, q) ∈ IF (X) for some F b Γ, that is

Ip,q(x) :=


q ∨ x|Γ\F if x|F = p

p ∨ x|Γ\F if x|F = q

x otherwise.

We refer to T 0(X) as the étale asymptotic relation. We remark that in [27] it was called the “topological
Gibbs relation”.

We endow both T (X) and T 0(X) with the inductive limit topology that comes from viewing
T (X) and T 0(X) as the direct limit of the compact topological spaces (TF (X))FbΓ and (T 0

F (X))FbΓ

respectively. With that topology the spaces T (X) and T 0(X) are metrizable and locally compact, but
in general not compact. We remark that this topology on T 0(X) turns it into an étale equivalence
relation in the sense of [35]. Notice that a function Ψ: T 0(X) → R is continuous if and only if for
every interchangeable pair of patterns (p, q) the map x 7→ Ψ(x, Ip,q(x)) is a continuous function with
respect to the product topology on X.

Definition 2.3. Given an equivalence relation R ⊂ X × X, an R-cocycle is a function Ψ: R → R
that satisfies

Ψ(x, z) = Ψ(x, y) + Ψ(y, z) for every (x, y), (y, z) ∈ R.

From the definition of R-cocycle it follows immediately that Ψ(x, x) = 0 for every x ∈ X and that
Ψ(y, x) = −Ψ(x, y) for every (x, y) ∈ R.

Definition 2.4. Given an equivalence relation R ⊂ X×X and a function f : X → R one can formally
define for (x, y) ∈ R

Ψf (x, y) =
∑
g∈Γ

(f(gy)− f(gx)) .
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If the series above is absolutely convergent for every (x, y) ∈ R then Ψf is an R-cocycle and is
furthermore Γ-invariant.

A function f : X → R is locally constant if there exists F b Γ such that f(x) = f(y) whenever
x|F = y|F . We also say that f is F -locally constant if we want to make F explicit. For locally
constant functions there are finitely many non-zero terms in the series defining Ψf for the relations
T (X) and T 0(X), so the series is absolutely convergent. Furthermore, whenever f is locally constant,
the function Ψf : T 0(X)→ R is continuous.

Recall that T 0(X) is a locally compact topological space. Thus, the space of continuous functions
from T 0(X) to R can be equipped with the topology of uniform convergence on compact sets, which
induces a topology on the space of continuous T 0(X)-cocycles. There are many metrics that generate
this topology. For future reference we write a specific metric dT 0(X) that generates the topology:

Definition 2.5. The metric dT 0(X) on the space of T 0(X)-cocycles is given by:

dT 0(X)(Φ,Ψ) =

∞∑
n=1

1

2n
min

{
1, sup

(x,y)∈T 0
Fn

(X)

|Φ(x, y)−Ψ(x, y)|

}
,

where (Fn)n≥1 is some fixed enumeration of the non-empty finite subsets of Γ.

This metric generates the topology of uniform convergence on compact sets on the space of con-
tinuous T 0(X)-cocycles. Informally speaking, two cocycles Φ and Ψ are close if there exists a large
N ∈ N such that |Ψ(x, y)− Φ(x, y)| is uniformly small over (x, y) ∈ T 0

Fn
(X) for every n ≤ N .

Definition 2.6. Given f, g ∈ C(X) such that the T 0(X)-cocycles Ψf ,Ψg are well defined and contin-
uous, let

ρT 0(X)(f, g) = ‖f − g‖∞ + dT 0(X)(Ψf ,Ψg).

The map ρT 0(X) is a metric on the space of continuous functions for which the T 0(X)-cocycles are
well defined and continuous. It says that two functions are close if they are uniformly close, and the
cocycles they define are close in the topology of uniform convergence on compact sets on T 0(X).

2.3 Gibbs measures

In this section we formally define Gibbs measures (also called Gibbs states). In the literature it
is possible to find several definitions for Gibbs measures, which are equivalent, at least when the
setup is sufficiently restricted. Here we essentially follow the “conformality” framework as in [18, 34].
This definition is equivalent to the Dobrušin-Lanford–Ruelle definition of Gibbs measures as shown
in Section 3 of [8]. The conformality framework can also be expressed as an invariance property
with respect to certain probability kernels as in [2]. In some situations, for instance for the case of
finite-range interactions on shift spaces satisfying the pivot property, one can also characterize Gibbs
measures by their invariance under the Glauber dynamics as in [41]. In what follows, all measures
considered will be Borel probability measures.

We first recall the notion of the Radon-Nikodým cocycle for a measure which is non-singular with
respect to a countable Borel equivalence relation in the sense of [20]. A Borel measure µ on a topological
space X is non-singular with respect to a countable Borel equivalence relation R ⊂ X×X if whenever
µ(A) = 0 for some Borel set A ⊂ X then

µ

(⋃
x∈A
{y ∈ X : (x, y) ∈ R}

)
= 0.

If µ is non-singular with respect to a countable Borel equivalence relation R, then a Radon-Nikodým
R-cocycle for µ is a measurable map Dµ,R : R → R+ such that for every Borel bijection φ : X → X
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satisfying (x, φ(x)) ∈ R for µ-almost every x ∈ X, we have that

dµ ◦ φ
dµ

(x) = Dµ,R(x, φ(x)) for µ-almost every x ∈ X.

For any Borel Bijection φ : X → X the Radon-Nikodým derivative dµ◦φ
dµ is uniquely defined up

to a µ-null set. Thus the Radon-Nikodým cocycle is “essentially unique” in the following sense: If
D1,D2 : R → R+ are Radon-Nikodým R-cocycles of µ then there exists a Borel set X ′ ⊂ X such that
µ(X \X ′) = 0 and D1 and D2 coincide on (X ′ ×X) ∩R.

In what follows, we will say that two R-cocycles coincide up to a µ-null set if there exists a Borel
set X ′ ⊂ X with µ(X \ X ′) = 0 such that the cocycles coincide on (X ′ × X) ∩ R. For x ∈ X and
F b X we denote

[x]F := [x|F ] = {y ∈ X : y|F = x|F } .

Recall that the countable Borel equivalence relation T 0(X) is generated by the homeomorphisms
Ip,q defined in Section 2.2. See also [27, Lemma 2.2]. As explained in [20] the Radon-Nikodým cocycle
of a non-singular measure on a countable Borel equivalence relation is “essentially uniquely determined”
by the Radon-Nikodým derivatives on a set of Borel bijections that generate the relation. Using this
fact it is easy to obtain an explicit formula for a representative of the Radon-Nikodým cocycle of
T 0(X):

Lemma 2.7. Let µ be a measure on X which is non-singular with respect to T 0(X). Then there exists
X ′ ⊂ X such that µ(X \X ′) = 0 and for every (x, y) ∈ (X ′ ×X) ∩ T 0(X) we have

Dµ,T 0(X)(x, y) = lim
F↗Γ

µ([y]F )

µ([x]F )
.

Proof. Let (x, y) ∈ T 0(X), then for large enough F b Γ the involution Ix|F ,y|F satisfies that

µ([y]F ) = (µ ◦ Ix|F ,y|F )([x]F ) =

∫
[x]F

Dµ,T 0(X)(z, Ix|F ,y|F (z))dµ(z).

Consider the filtration (σ(AF ))FbΓ where the sets are ordered by inclusion and σ(AF ) is the σ-
algebra generated by AF . The minimal σ-algebra generated by this filtration is the Borel σ-algebra
of AΓ. The martingale convergence theorem implies that for any f ∈ L1(AΓ) the net of conditional
expectations (Eµ(f |σ(AF )))FbΓ converges to f as F ↗ Γ both in L1(AΓ) and µ-almost surely. By
the Radon-Nikodým theorem we have that the map z 7→ Dµ,T 0(X)(z, Ix|F ,y|F (z)) is in L1(AΓ). Notice
that for a fixed F b Γ and µ-almost every x ∈ AΓ

Eµ(Dµ,T 0(X)(·, Ix|F ,y|F (·))|σ(AF ))(x) =
1

µ([x]F )

∫
[x]F

Dµ,T 0(X)(z, Ix|F ,y|F (z))dµ(z).

Letting F be large enough we get that Dµ,T 0(X)(x, y) and µ([y]F )
µ([x]F ) are arbitrarily close outside a set

of measure 0.

Definition 2.8. Let f : X → R be such that the series defining Ψf (x, y) is absolutely convergent for
every (x, y) ∈ T (X). A Borel probability measure µ on a subshift X ⊂ AΓ is

1. Gibbs with respect to f , if µ is non-singular with respect to T (X) and its Radon-Nikodým
T (X)-cocycle is equal to exp(Ψf ) up to a µ-null set.

2. Étale Gibbs with respect to f , if µ is non-singular with respect to T 0(X) and its Radon-Nikodým
T 0(X)-cocycle is equal to exp(Ψf ) up to a µ-null set.
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As T 0(X) is a subrelation of T (X), it follows that for any potential f : X → R any Gibbs measure
with respect to f is automatically étale Gibbs with respect to f . The following example shows that
the converse does not hold in every subshift.

Example 2.9. Let
X≤1 = {x ∈ {0, 1}Γ : |{g ∈ Γ : x(g) = 1}| ≤ 1}

be the sunny-side up subshift. It is clear that for an infinite group Γ, the only Γ-invariant measure on
X≤1 is the delta measure supported on the constant configuration 0Γ. This measure is singular with
respect to T (X≤1), hence not Gibbs for any interaction. However, this measure is étale Gibbs (with
respect to any f), since the étale asymptotic relation is given by T 0(X≤1) = {(0Γ, 0Γ)}∪{(x, y) : x, y ∈
X≤1 \ {0Γ}}.

2.4 The topological Markov property

In what follows, we shall present the topological property which characterizes the equality of the
asymptotic relation T (X) and the étale asymptotic relation T 0(X), and therefore ensures that both
definitions of Gibbs given above coincide.

Definition 2.10. We say a subshift X ⊂ AΓ satisfies the topological Markov property (TMP) if for
every A b Γ there exists B b Γ with A ⊂ B such that whenever x, y satisfy that x|B\A = y|B\A we
have that the configuration z ∈ AΓ is in X, where z(g) is given for every g ∈ Γ by

z(g) =

{
x(g) if g ∈ B
y(g) if g ∈ Γ \B.

Any set B satisfying the above is called a memory set of A.

The topological Markov property, as we present it here, was defined in [7]. It was proposed as
a generalization of the condition of being a subshift of finite type which was sufficient to prove a
generalization of the Lanford–Ruelle theorem for actions of amenable groups. The TMP in turn
generalizes the more restrictive notion of Topological Markov field, which was explored by several
authors [13, 14, 15] as a generalization of subshifts of finite type in the context of Gibbs theory. The
related notion of “splicable metric space”, which can be interpreted in the symbolic setting as a bounded
variant of the TMP, was used even earlier by Gromov to provide analogues of Ax’s surjunctivity theorem
beyond algebraic varieties (see [22, Section 8.C’], and also [12] for an application of the topological
Markov property to surjunctivity of general group actions). More generally, an analogous version of
the TMP can be defined for arbitrary group actions on compact metrizable spaces, and it naturally
generalizes the well known pseudo-orbit tracing property, also called shadowing. See [5] for further
background.

The class of subshifts that satisfy the topological Markov property is much larger than the class
of shifts of finite type. For instance, it is known that for a fixed group Γ there are countably many
subshifts of finite type up to topological conjugacy, whereas for Γ = Z2 there exist uncountably many
non-conjugate subshifts with the topological Markov property [14, page 233]. Moreover, every subshift
which has a trivial asymptotic relation satisfies the property [5, Proposition 5.3]. Another interesting
family of examples is algebraic: every subshift whose alphabet is a finite group and is closed under the
pointwise group operation satisfies the property [7, Proposition 5.1], while there are examples with that
structure which are not of finite type if the acting group is solvable but not polycyclic-by-finite [38].

It is clear from the definition that if X satisfies the TMP and B is a memory set of A, then all
patterns with support B which coincide on B \ A and occur in some configuration of X are pairwise
interchangeable. This property in fact characterizes the spaces where the étale asymptotic relation
coincides with the asymptotic relation as shown in the next proposition.
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Proposition 2.11. Let X ⊂ AΓ be a subshift. Then X satisfies the TMP if and only if T 0(X) = T (X).
In particular, if X satisfies the TMP and f : X → R is such that the series defining Ψf (x, y)

is absolutely convergent for every (x, y) ∈ T (X), then every Borel probability measure is Gibbs with
respect f if and only if it is étale Gibbs with respect to f .

Proof. Suppose X satisfies the TMP. Obviously, it is always true that T 0(X) ⊂ T (X). Let (x, y) ∈
T (X). Then there exists F b Γ such that (x, y) ∈ TF (X). As X satisfies the TMP, there exists a
memory set B for F , and therefore the pair of words x|B and y|B are interchangeable, hence (x, y) ∈
T 0
B(X).

Conversely, suppose X does not satisfy the TMP and let (Fn)n∈N be an increasing sequence of finite
subsets of Γ such that Fn ↗ Γ. Then there is A b Γ such that for every Fn which contains A, there are
x(n), y(n) ∈ X such that x(n)|Fn\A = y(n)|Fn\A but the patterns pn = x(n)|Fn and qn = y(n)|Fn are not

interchangeable. Let (x′, y′) be an accumulation point of the sequence (x(n), y(n))n∈N. By definition,
(x′, y′) ∈ TA(X) and thus (x′, y′) ∈ T (X).

It follows that for each K b Γ which contains A there is m ∈ N such that pm|K = x′|K and
qm|K = y′|K . Thus (x′, y′) /∈ T 0

K(X) for any large enough K which implies that (x′, y′) /∈ T 0(X). This
shows that T 0(X) 6= T (X).

3 Sofic groups and sofic pressure

3.1 Sofic groups

For a finite set V we write Sym(V ) for the group of permutations of V . A group Γ is sofic if there
exist a sequence (Vi)i∈N of finite sets such that |Vi| = ni goes to infinity and a sequence Σ = {σi : Γ→
Sym(Vi)}∞i=1 that is

asymptotically an action: lim
i→∞

1

ni
|{v ∈ Vi : σi(st)v = σi(s)σi(t)v}| = 1 for every s, t ∈ Γ

asymptotically free: lim
i→∞

1

ni
|{v ∈ Vi : σi(s)v 6= σi(t)v}| = 1 for every s 6= t ∈ Γ.

In this case we say Σ is a sofic approximation sequence of Γ.

Definition 3.1. Given σ : Γ → Sym(V ) and F b Γ, we say that v ∈ V is F -good for σ if σ(st)v =
σ(s)σ(t)v for all s, t ∈ F and σ(s)v 6= σ(t)v for all s 6= t ∈ F .

With this notation, saying that Σ = {σi : Γ→ Sym(Vi)}∞i=1 is a sofic approximation means that for
any F b Γ,

lim
i→∞

1

ni
|{v ∈ Vi : v is F -good for σi}| = 1.

3.2 Pullback names and empirical distributions

For the remainder of this section, we fix a compact metrizable space X, an action Γ y X. we denote
by Prob(X) the space of Borel probability measures on X, and by ProbΓ(X) the space of Γ-invariant
Borel probability measures on X. We also consider the space XΓ with the product topology and the
natural left action Γ y XΓ given by (gx)(h) = x(g−1h) for every g, h ∈ Γ and x ∈ XΓ.

The following notation closely follows Austin’s approach to sofic entropy [3]:

Definition 3.2. Let X be a compact metrizable space, V be a finite set, v ∈ V and σ : Γ→ Sym(V ).
We define the following maps
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1. ξσ,v : XV → XΓ given by

ξσ,v(x)(g) = x(σ(g−1)v) for every g ∈ Γ.

2. ξσ : XV → Prob(XΓ) given by

ξσ(x) =
1

|V |
∑
v∈V

δξσ,v(x).

3. ζσ : Prob(XV )→ Prob(XΓ) given by

ζσ(ν)(A) =

∫
XV

ξσ(x)(A)dν(x) for every Borel set A.

In [3] ξσ,v(x) was called “the pullback name of x via σ at v”, and ξσ(x) was called “the empirical
distribution of x”.

In the case where X is a discrete finite set (i.e, an alphabet), for ν ∈ Prob(XV ) we can write
ν =

∑
x∈XV λxδx and thus we may express the map ζσ in the following convenient way

ζσ(ν) =
∑
x∈XV

λxξσ(x) =
∑
x∈XV

λx
|V |

∑
v∈V

δξσ,v(x).

Recall that a basis for XΓ is given by the cylinder sets i.e. sets U ⊂ XΓ of the form

U = {x ∈ XΓ : x(s) ∈ Us for every s ∈ S},

where S b Γ and Us ⊂ X is open for every s ∈ S.

Proposition 3.3. Let Σ = {σi : Γ → Sym(Vi)}∞i=1 be a sofic approximation sequence of Γ. For any
ε > 0, g ∈ Γ and cylinder set U ⊂ XΓ, there is N ∈ N such that for any i ≥ N and νi ∈ Prob(XVi)
we have | (ζσi(νi)− gζσi(νi)) (U)| ≤ ε. In particular, Any weak-∗ limit of a sequence of measures
(ζσi(νi))i∈N with νi ∈ Prob(XVi) is a Γ-invariant probability measure on XΓ.

Proof. Let ε > 0 be arbitrary, S b Γ be a symmetric set containing the identity, and let U = {x ∈
XΓ : x(s) ∈ Us for every s ∈ S}, with Us ⊂ X open in X for every s ∈ S. Let g ∈ Γ. Then for
νi ∈ Prob(XVi) we may write

(ζσi(νi)− gζσi(νi)) (U) =

∫
XVi

1

|Vi|
∑
v∈Vi

(
δξσi,v(x)(U)− δξσi,v(x)(g

−1U)
)

dνi.

=

∫
XVi

1

|Vi|
|{v ∈ Vi : ξσi,v(x)(s) ∈ Us for every s ∈ S}|dνi

−
∫
XVi

1

|Vi|
∣∣{v ∈ Vi : ξσi,v(x)(g−1s) ∈ Us for every s ∈ S}

∣∣dνi.
Notice that ξσi,v(x)(s) = x(σi(s

−1)(v)) and that ξσi,v(x)(g−1s) = x(σi(s
−1g)(v)). As Σ is asymp-

totically an action, for every large enough i ∈ N there exists V ′′i ⊂ Vi which is (S ∪ gS ∪ g−1S)-good
for σi and such that |V ′′i | ≥ (1 − ε

4 )|Vi|. Let V ′i = V ′′i ∩ σi(g−1)V ′′i . Then |V ′i | ≥ (1 − ε
2 )|Vi|. We get

that that ξσi,v(x) ∈ U if and only if ξσi,σi(g−1)v(x) ∈ g−1U for every v ∈ V ′i . We can thus eliminate
vertices in V ′i in the equation above and obtain the following estimate:

|(ζσi(νi)− gζσi(νi)) (U)| ≤
∫
XVi

2|Vi \ V ′i |
|Vi|

dνi ≤ ε.

As the cylinders sets are a basis for the product topology on XΓ the result follows.
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When Γ is countable, both the product topology of XΓ and the space Prob(XΓ) are metrizable.
Let us denote a compatible metric on XΓ by dT and a compatible metric on Prob(XΓ) by dP (for
instance, the Kantorovich metric). The previous lemma can then be restated in the following way: for
every ε > 0 and g ∈ Γ there is N ∈ N such that for every i ≥ N we have dP (ζσi(νi), gζσi(νi)) ≤ ε for
any measure νi on XVi .

Given a closed Γ-invariant set Y ⊂ XΓ, µ ∈ Prob(XΓ) and δ > 0, we define:

Nδ(Y ) := {ν ∈ Prob(XΓ) : ν({x ∈ XΓ : min
y∈Y

dT (x, y) ≥ δ}) ≤ δ},

Nδ(µ) = {ν ∈ Prob(XΓ) : dP (µ, ν) ≤ δ}.

Lemma 3.4. Let Γ be a countable group, Σ = {σi : Γ→ Sym(Vi)}∞i=1 be a sofic approximation sequence
of Γ and Y ⊂ XΓ a closed Γ-invariant set. For any δ > 0 there exists δ′ > 0 and N ∈ N such that for
any i ≥ N ,

ξ−1
σi (Nδ′(Y )) ⊂

⋃
µ∈ProbΓ(Y )

ξ−1
σi (Nδ(µ)).

Furthermore, if ProbΓ(Y ) 6= ∅, then for any δ > 0 there exists δ′ > 0, N ∈ N and µ1, . . . , µk ∈
ProbΓ(Y ) such that for any i ≥ N ,

ξ−1
σi (Nδ′(Y )) ⊂

k⋃
j=1

ξ−1
σi (Nδ(µj)).

Proof. By Proposition 3.3, for any ε > 0 and g ∈ Γ there exists N ∈ N such that for every i ≥ N and
x ∈ XVi , dP (ζσi(δx), gζσi(δx)) = dP (ξσi(x), gξσi(x)) ≤ ε. For δ > 0 and g ∈ Γ let

P (δ, g) := {ν ∈ Prob(XΓ) : dP (ν, gν) ≤ δ}.

It follows that for any δ′ > 0 and F b Γ there exists N ∈ N such that for any i ≥ N

ξσi(A
Vi) ⊂

⋂
g∈F

P (δ′, g).

Now, it is clear from the definition that we have

ProbΓ(Y ) =
⋂

δ′>0,FbΓ

Nδ′(Y ) ∩
⋂
g∈F

P (δ′, g)

 .

Since ProbΓ(Y ) ⊂
⋃
µ∈ProbΓ(Y )Nδ(µ) it follows by compactness that for every δ > 0 there exists δ′ > 0

and F b Γ such that
Nδ′(Y ) ∩

⋂
g∈F

P (δ′, g) ⊂
⋃

µ∈ProbΓ(Y )

Nδ(µ).

As ξ−1
σi (P (δ′, g)) = AVi for every g ∈ F and i ≥ N , it follows that

ξ−1
σi (Nδ′(Y )) ⊂ ξ−1

σi

 ⋃
µ∈ProbΓ(Y )

Nδ(µ)

 =
⋃

µ∈ProbΓ(Y )

ξ−1
σi (Nδ(µ)).

Since Nδ′(X)∩
⋂
g∈F P (δ′, g) is compact, and Nδ(µ) is open for every µ ∈ Prob(X), it follows that

if ProbΓ(Y ) is nonempty, then there exists µ1, . . . , µk ∈ ProbΓ(Y ) such that

Nδ′(Y ) ∩
⋂
g∈F

P (δ′, g) ⊂
k⋃
j=1

Nδ(µj).
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Therefore we may conclude that

ξ−1
σi (Nδ′(Y )) ⊂

k⋃
j=1

ξ−1
σi (Nδ(µj)).

3.3 Topological and measure-theoretic pressure of actions of sofic groups

The notions of topological and measure-theoretic pressure for Zd-actions were introduced and studied
by Ruelle [36], who also proved a variational principle extending the variational principle for entropy.
Both notions and the variational principle were latter extended to actions of countable amenable
groups by Ollagnier and Pinchon [33, 31], Stepin and Tagi-Zade [43] and Tempelman [44]. A further
generalization of the notions of measure-theoretic and topological pressure for actions of sofic groups
on compact metrizable spaces was introduced by Nhan-Phu Chung in [16], who also proved the corre-
sponding variational principle in this setting (building on the landmark papers of Bowen [9] and Kerr
and Li [24]). A similar notion is also introduced by Alpeev in [2] for the space AΓ, albeit with different
objectives.

In what follows we will recall Chung’s notions of pressure for actions of sofic groups, and then
restate them in an equivalent manner using Austin’s framework of “empirical measures”, which we
introduced above. This formalism will turn out to be convenient in our symbolic setting.

Let Γ be a sofic group acting on a compact metrizable space X by homeomorphisms, Σ = {σi : Γ→
Sym(Vi)} a sofic approximation sequence for Γ, ρ a continuous pseudometric on X and f : X → R a
continuous map.

Let i ∈ N, F b Γ and δ > 0. The set Map(ρ, F, δ, σi) consists of all maps ϕ : Vi → X such that

max
s∈F

(
1

|Vi|
∑
v∈Vi

(ρ(sϕ(v), ϕ(σs(v))))2

)1/2

≤ δ.

That is, the maps ϕ which roughly look like the restriction of an orbit to F for most vertices v ∈ V .
For ε > 0, we say E ⊂ Map(ρ, F, δ, σi) is ε-separated if for every ϕ1, ϕ2 ∈ E we have

max
v∈Vi

ρ(ϕ1(v), ϕ2(v)) ≥ ε.

Let Mε
Σ,∞(f,X,Γ, ρ, F, δ, σi) denote the supremum over all ε-separated subsets E of Map(ρ, F, δ, σi)

of the expression ∑
ϕ∈E

exp

(∑
v∈Vi

f(ϕ(v))

)
.

Finally, let

P εΣ,∞(f,X,Γ, ρ, F, δ, σi) =
1

|Vi|
log
(
Mε

Σ,∞(f,X,Γ, ρ, F, δ, σi)
)

Definition 3.5. The topological sofic pressure of Γ y X with respect to f : X → R and the sofic
approximation sequence Σ is given by

PΣ(Γ y X, f) = sup
ε>0

inf
FbΓ

inf
δ>0

lim sup
i→∞

P εΣ,∞(f,X,Γ, ρ, F, δ, σi).

The value of the sofic pressure function at the zero function f = 0 is called the topological sofic
entropy of Γ y X with respect to the sofic approximation sequence Σ. We denote the topological sofic
entropy by

hΣ(Γ y X) = PΣ(Γ y X, 0).
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The topological sofic entropy was defined by Kerr and Li [24] before the the definition of sofic pressure,
which can be considered as a generalization of their notion.

If µ is a Γ-equivariant measure on X and L is a finite subset of C(X), we define Mapµ(ρ, F, δ, σi, L)
as the set of ϕ ∈ Map(ρ, F, δ, σi) which satisfy∣∣∣∣∣ 1

|Vi|
∑
v∈Vi

h(ϕ(v))−
∫
X

hdµ

∣∣∣∣∣ ≤ δ, for every h ∈ L.

Similarly, we let Mε
Σ,∞,µ(f,X,Γ, ρ, F, δ, σi, L) denote the supremum over all ε-separated subsets of

Mapµ(ρ, F, δ, σi, L) of the same expression as above, and let

P εΣ,∞,µ(f,X,Γ, ρ, F, δ, L, σi) =
1

|Vi|
log
(
Mε

Σ,∞,µ(f,X,Γ, ρ, F, δ, L, σi)
)
.

Definition 3.6. The measure-theoretic sofic pressure of Γ y (X,µ) with respect to f : X → R and
the sofic approximation sequence Σ is given by

PΣ(f,Γ y (X,µ)) = sup
ε>0

inf
FbΓ

inf
δ>0

inf
LbC(X)

lim sup
i→∞

P εΣ,∞,µ(f,X,Γ, ρ, F, δ, L, σi).

The measure-theoretic sofic entropy of Γ y (X,µ) with respect to the sofic approximation sequence
Σ is the measure-theoretic sofic pressure of Γ y (X,µ) at the zero function f = 0. We denote the
measure-theoretic sofic entropy by

hΣ(Γ y X,µ) = PΣ(Γ y X,µ, 0).

A straightforward approximation argument shows that

PΣ(Γ y X,µ, f) = hΣ(Γ y X,µ) +

∫
X

fdµ.

It is consistent with the definition to declare that for µ ∈ Prob(X) which is not Γ-invariant,

PΣ(Γ y X,µ, f) = −∞.

It can sometimes be semantically and conceptually convenient to replace the parameters F b Γ,
δ > 0 and L b C(X) that appear in the above definition of topological and measure-theoretic sofic
pressure by a single parameter. For σ : Γ→ Sym(V ), f : X → R, ε > 0 and U an open set of probability
measures on XΓ we define

P (U, σ, ε, f) =
1

|V |
log

 sup
E∈E(U,σ,ε)

∑
ϕ∈E

exp

(∑
v∈V

f(ϕ(v))

) ,

where E(U, σ, ε) is the set of all collections E of maps ϕ ∈ XVi which satisfy that ξσ(ϕ) ∈ U and which
are ε-separated.

Let X? ⊂ XΓ be the space of Γ-orbits, that is

X? = {y ∈ XΓ : yg−1 = (gy)1Γ for every g ∈ Γ}.

Let µ? be the pushforward measure on X? induced by a measure µ on X with respect to the map
that assigns to each x ∈ X its orbit under Γ. It is known that the definitions of sofic pressure (both
topological and measure-theoretic) do not depend upon the choice of continuous pseudometric, as long
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as it is dynamically generating, see [16, Lemma 2.7], from this fact, a computation shows that we may
rephrase the definitions above succinctly as

PΣ(Γ y X, f) = sup
ε>0

PΣ(ε,Γ y X, f),

and
PΣ(f,Γ y X,µ, f) = sup

ε>0
PΣ(ε,Γ y X,µ, f).

Where:

PΣ(ε,Γ y X, f) := inf
δ>0

lim sup
i→∞

P (Nδ(X?), σi, ε, f),

and
PΣ(ε,Γ y X,µ, f) := inf

δ>0
lim sup
i→∞

P (Nδ(µ?), σi, ε, f).

The above equivalent expressions have a number of advantages which will become evident in the
symbolic setting. We state following simple observation (essentially equivalent to Proposition 2.2
of [17]):

Proposition 3.7. For any ε > 0 the function Hε : ProbΓ(X)→ {−∞} ∪ [0,+∞) given by

Hε(µ) = hΣ(ε,Γ y X,µ)

is upper semi-continuous.

Proof. Fix ε > 0 and µ ∈ ProbΓ(X). Choose any y > Hε(µ), then there exists δ > 0 such that
lim supi→∞ P (Nδ(µ?), σi, ε, 0) < y. It follows that for any ν ∈ Nδ(µ?), Hε(ν) < y.

With all the notation above in place, we can provide short proof of the variational principle for
sofic pressure. It seems that once we have have the definitions in place, the proof below is as short as
Misiurewicz’s proof of the variational principle for entropy of Zd-actions [29], and arguably conceptually
simpler.

Theorem 3.8 (N.P. Chung’s variational principle for sofic pressure [16]). Let Γ y X be an action of
a sofic group Γ on a compact space X and let Σ be a sofic approximation sequence for Γ. For every
ε > 0 and f ∈ C(X) we have:

PΣ(ε,Γ y X, f) = sup
µ∈ProbΓ(X)

PΣ(ε, f,Γ y X,µ, f).

In particular,
PΣ(Γ y X, f) = sup

µ∈ProbΓ(X)

PΣ(Γ y X,µ, f).

Proof. Suppose that ProbΓ(X) 6= ∅ and fix µ ∈ ProbΓ(X). Let δ > 0 and choose δ′ > 0 such that
whenever dP (µ?, ν) < δ′ then for h ∈ C(XΓ) given by h(x) = dT (x,X?) we have∣∣∣∣∫

XΓ

hdµ? −
∫
XΓ

hdν

∣∣∣∣ < δ2.

It follows that

δ >
1

δ

∣∣∣∣∫
XΓ

hdµ? −
∫
XΓ

hdν

∣∣∣∣ =
1

δ

∣∣∣∣∫
XΓ

hdν

∣∣∣∣ ≥ ν({x ∈ XΓ : dT (x,X?) ≥ δ}).

14



Thus we conclude that for each δ > 0, there is δ′ > 0 such that Nδ′(µ
?) ⊂ Nδ(X?). It follows that for

any i ∈ N, f ∈ C(X) and ε > 0

P (Nδ′(µ
?), σi, ε, f) ≤ P (Nδ(X

?), σi, ε, f).

This immediately yields the “easy direction” of the variational principle:

sup
µ∈ProbΓ(X)

PΣ(ε,Γ y X,µ, f) ≤ PΣ(ε,Γ y X, f).

Notice that the above inequality is trivial in the case where ProbΓ(X) = ∅.
In order to show the converse we apply Lemma 3.4. The case where ProbΓ(X) = ∅ yields that

ξ−1
σi (Nδ′(X

?)) is empty for all large enough i, and thus PΣ(f,Γ y X) = −∞ and the variational
principle holds. Suppose that ProbΓ(X) 6= ∅, then Lemma 3.4 yields that for any δ > 0 there exists
δ′ > 0, N ∈ N and µ1, . . . , µk ∈ ProbΓ(X?) such that for any i > N ,

ξ−1
σi (Nδ′(X

?)) ⊂
k⋃
j=1

ξ−1
σi (Nδ(µj)).

It follows that for all i > N , f ∈ C(X) and ε > 0,

P (Nδ′(X), σi, ε, f) ≤ log(k)

|Vi|
+ max

1≤j≤k
P (Nδ(µj), σi, ε, f).

Let (δn)∞n=1 be a decreasing sequence of positive numbers tending to 0. From the above equation we
conclude that there exists another decreasing sequence of positive numbers (δ′n)∞n=1 and a sequence of
measures µn ∈ ProbΓ(X?) such that for every n ∈ N

lim sup
i→∞

P (Nδ′n(X), σi, ε, f) ≤ lim sup
i→∞

P (Nδn(µn), σi, ε, f).

Let µ ∈ ProbΓ(X?) be a weak-∗ limit of of (µn)∞n=1. Then for any δ > 0 there exists N such that for
all n > N we have Nδn(µn) ⊂ Nδ(µ). It follows that for any δ > 0 we have

lim sup
i→∞

P (Nδ′n(X), σi, ε, f) ≤ lim sup
i→∞

P (Nδ(µ), σi, ε, f),

for all sufficiently large n. Taking n→∞ and then infimum over δ > 0, we conclude that

PΣ(ε,Γ y X, f) ≤ PΣ(ε,Γ y X,µ, f).

In particular, we obtain the variational principle for sofic pressure.

Definition 3.9. We say that µ ∈ ProbΓ(X) is an equilibrium measure (also called equilibrium state)
for f ∈ C(X) with respect to Σ if

PΣ(Γ y X, f) = PΣ(Γ y X,µ, f).

That is, if it achieves the supremum in the variational principle. In the case f = 0 we call µ a measure
of maximal entropy with respect to Σ.

Let (W, ‖ ‖) be a Banach space and denote by W ∗ its continuous dual space. Given a convex
function F : W → R, we say that a linear functional ψ ∈ W ∗ is a tangent functional (or subgradient)
of F at w ∈W if for every u ∈W we have

F (u)− F (w) ≥ ψ(u− w).
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Given a sofic approximation sequence for Γ, and a Γ-action Γ y X, we can consider the measure-
theoretic entropy and the topological pressure as functions on Prob(X) and C(X):

H := hΣ(Γ y X, ·) : Prob(X)→ {−∞} ∪ [0,+∞]

and
Π := PΣ(Γ y X, ·) : C(X)→ [−∞,+∞]

The variational principle is equivalent to the statement that the topological pressure function Π is
precisely equal to the Legendre transform (or Legendre–Fenchel transform) of −H.

The following properties of the topological pressure are either classical (at least in the amenable
case) or trivial, some of them can be found in [16, Proposition 6.1]. The straightforward verification of
these properties extends verbatim to the case of actions of sofic groups. We provide short self-contained
proofs for completeness.

Proposition 3.10. Let Σ be a sofic approximation sequence for Γ, and let Γ y X be a Γ-action such
that hΣ(Γ y X) is finite. Then the sofic topological pressure of Γ y X with respect to Σ is finite for
every f ∈ C(X), and the function Π: C(X)→ R given by Π(f) = PΣ(f,Γ y X) satisfies the following
properties:

1. Π is monotonically non-decreasing: Π(f) ≥ Π(g) whenever f − g ≥ 0.

2. For every c ∈ R and f ∈ C(X), Π(f + c) = Π(f) + c.

3. Π is 1-Lipschitz with respect to the ‖ · ‖∞-norm on C(X). In particular, it is continuous.

4. Π is well defined on Γ-cohomology classes. Namely, for every f, f0,∈ C(X) and g ∈ Γ,

Π(f0 + f − f ◦ g) = Π(f0).

In particular, Π is Γ-invariant in the sense that Π(f) = Π(f ◦ g) for every f ∈ C(X) and g ∈ Γ.

5. Π is a convex function.

6. If µ ∈ ProbΓ(X) is an equilibrium state for f0 ∈ C(X) with respect to Σ, then µ is a tangent
functional of Π at f0.

7. Conversely, a tangent functional of Π at any f ∈ C(X), is unital, positive and Γ-invariant. If the
sofic measure-theoretic entropy is an upper semi-continuous and concave function on Prob(X),
any tangent functional of Π at any f ∈ C(X) is furthermore an equilibrium state for f0 ∈ C(X)
with respect to Σ.

Proof. If hΣ(Γ y X) is finite, from the variational principle we have

|PΣ(f,Γ y X)| ≤ hΣ(Γ y X) + sup
µ∈ProbΓ(X)

∣∣∣∣∫ fdµ

∣∣∣∣ ≤ hΣ(Γ y X) + ‖f‖∞.

From this inequality it follows that PΣ(f,Γ y X) is finite for every f ∈ C(X). Let us remark that
in the proof of properties 1 – 3 below we do not need to assume that PΣ(f,Γ y X) ∈ R. In fact,
the finiteness of PΣ(f,Γ y X) also follows from the assumption that hΣ(Γ y X) ∈ R together with
property 3.

1. Monotonicity of Π follows directly from monotonicity of f 7→ P (U, σ, ε, f).
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2. This follows directly from the fact that for any E ⊂ XVi , f ∈ C(X) and c ∈ R we have

∑
ϕ∈E

exp

(∑
v∈Vi

f(ϕ(v)) + c

)
= e|Vi|c

∑
ϕ∈E

exp

(∑
v∈Vi

f(ϕ(v)) + c

)
,

thus for any open set U of probability measures on XΓ,

P (U, σi, ε, f + c) = P (U, σi, ε, f) + c.

The result follows by taking i→∞, δ → 0 and ε→ 0.

3. By the two previous properties, for f1, f2 ∈ C(X)

Π(f1)−Π(f2) ≤ Π(f2 + ‖f1 − f2‖∞)−Π(f2) = ‖f1 − f2‖∞.

Interchanging the roles of f1 and f2 we conclude that |Π(f1)−Π(f2)| ≤ ‖f1 − f2‖∞.

4. Suppose f, f0,∈ C(X) and g ∈ Γ. Since
∫
f0dµ =

∫
(f0 + f − f ◦ g)dµ for any µ ∈ ProbΓ(X), it

follows that
PΣ(Γ y X,µ, f0) = PΣ(Γ y X,µ, f0 + f − f ◦ g)

So by the variational principle

Π(f0 + f − f ◦ g) = Π(f0).

5. Convexity of Π follows easily from Hölder’s inequality (see [16, Proposition 6.1]). Alternatively
it follows directly from the variational principle, which shows the value of Π is a pointwise
supremum of affine functions.

6. Suppose that µ ∈ ProbΓ(X) is an equilibrium state for f with respect to Σ. This means that

Π(f0) = hΣ(Γ y X,µ) +

∫
X

f0dµ.

On the other hand, by the variational principle we have that for any f ∈ C(X)

Π(f) ≥ hΣ(Γ y X,µ) +

∫
X

fdµ.

It follows that for any f ∈ C(X)

Π(f)−Π(f0) ≥
∫
X

f − f0dµ.

This shows that µ is a tangent functional of Π at f0.

7. Suppose that η ∈ C(X)∗ is a tangent functional of Π at f0. This means that for every f ∈ C(X)

Π(f)−Π(f0) ≥ η(f − f0).

In particular, set f = f0 ± 1 and apply the property 2 to conclude that η(1) = 1. Because Π is
monotone it follows that for any nonnegative g ∈ C(X)

Π(f0 − g)−Π(f0) ≤ 0,
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So η(−g) ≤ 0 so η(g) ≥ 0. This shows η corresponds to a positive measure. To see that η is
Γ-invariant, use the fact that Π(f0 + f − f ◦ g) = Π(f0).

Now further assume that H = hΣ(Γ y X, ·) : Prob(X) → R is upper semi-continuous and
concave. By hypothesis we have that hΣ(Γ y X) is finite and thus −H is proper. It follows
by the Fenchel–Moreau theorem that −H is equal on Prob(X) to the Legendre transform of its
Legendre transform, which is the sofic topological pressure function Π. This means that

hΣ(Γ y X, η) = inf
f∈C(X)

PΣ(Γ y X, f)− η(f).

In particular,
hΣ(Γ y X, η) ≥ PΣ(Γ y X, f0)− η(f0).

So
PΣ(Γ y X, η, f0) ≥ PΣ(Γ y X, f0).

By the variational principle the above inequality is in fact an equality and thus η is an equilibrium
measure for f0 with respect to Σ.

By the previous proposition, whenever the measure-theoretic sofic entropy is an upper semi-
continuous and concave function of the measure, equilibrium measures are precisely the tangent
functionals of the convex continuous function Π. Let us discuss some sufficient conditions for these
hypotheses to hold.

With regards to concavity of measure-theoretic sofic entropy: It is well known that when Γ is
amenable, the measure-theoretic entropy H, when restricted to the invariant measures ProbΓ(X), is
an affine function. Recall that H(µ) = −∞ for µ 6∈ ProbΓ(X), so for any action of an amenable
group Γ, we have that −H = −hΣ(Γ y X, ·) is convex. When Γ is non-amenable, it can happen that
µ1, µ2 ∈ ProbΓ(X) satisfy hΣ(Γ y X,µi) ≥ 0 for i = 1, 2 but hΣ(Γ y X, 1

2µ1 + 1
2µ2) = −∞, see for

instance Proposition 3.1 of [10].
With regards to upper semi-continuity of the measure-theoretic sofic entropy, we now recall that

expansiveness is a sufficient condition. Recall that an action Γ y X is expansive if there exists ε > 0
such that for any x1 6= x2 in X there exists g ∈ Γ such that the distance between gx1 and gx2 is
at least ε. A positive constant ε > 0 as above is called an expansive constant for Γ y X. Whether
a particular ε > 0 is an expansive constant depends on the choice of metric, but the existence of an
expansive constant does not. If Γ y X is expansive then with respect to any sofic approximation the
measure-theoretic sofic entropy is an upper semi-continuous function of the measure, see Theorem 2.1
of [17]. This is result can be obtained as a consequence of the fact that when Γ y X is expansive then
there exists ε > 0 such that for all f ∈ C(X) and µ ∈ ProbΓ(X)

PΣ(Γ y X,µ, f) = PΣ(ε,Γ y X,µ, f).

Upper semi-continuity of the measure-theoretic entropy for expansive actions now follows using propo-
sition 3.7.

3.4 Sofic pressure for shift spaces

As discussed above, the sofic topological pressure with respect to Σ does not depend upon the choice
of a continuous dynamically generating pseudometric. In particular, for a subshift X ⊂ AΓ we may
choose ρ : X ×X → R given by

ρ(x, y) =

{
0 if x(1Γ) = y(1Γ),

1 if x(1Γ) 6= y(1Γ).
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It is clear that with this pseudometric, the notion of being ε-separated is exactly the same for every
value ε < 1. Namely, it is equivalent to the statement that for every ϕ1, ϕ2 ∈ XVi there is v ∈ Vi such
that ϕ1(v)1Γ 6= ϕ2(v)1Γ . Thus for subshifts both definitions simplify to

PΣ(f,Γ y X) = inf
δ>0

lim sup
i→∞

1

|Vi|
log
(
P (f,Nδ(X

∗), σi,
1
2 )
)
.

PΣ(f,Γ y (X,µ)) = inf
δ>0

lim sup
i→∞

1

|Vi|
log
(
P (f,Nδ(µ

∗), σi,
1
2 )
)
.

We can further simplify the formulae for pressure by replacing XVi by the finite set AVi and writing
for U an open set of probability measures on X

P (f, U, σ) =
1

|V |
log

 ∑
w∈Avi :ξσ(w)∈U

exp

(∑
v∈V

f(ξσ,v(w))

) .

The advantage of the previous definition is that we no longer need to consider a supremum over
ε-separated sets nor make computations on the space of orbits (X?, µ?). It is clear that any f ∈ C(X)
and µ ∈ ProbΓ(X) we have

PΣ(f,Γ y X) = inf
δ>0

lim sup
i→∞

P (f,Nδ(X), σi).

PΣ(f,Γ y (X,µ)) = inf
δ>0

lim sup
i→∞

P (f,Nδ(µ), σi).

For the second equality, we use the fact that for every w ∈ AV we have,∑
v∈V

f(ξσ,v(w)) = |V |
∫
X

f d (ξσ(w)) .

For convenience in what follows, if W is a set of probability measures on AΓ define:

PΣ(f,W,Γ y X) = inf
U⊃W

lim sup
i→∞

P (f, U, σi),

where the infimum is over all open sets of probability measures U that contain W .

4 Proof of the sofic Lanford–Ruelle theorem for locally con-
stant functions

For the remainder of this section, we fix a subshift X ⊂ AΓ. Recall that we denote by T (X) the
asymptotic relation of X and by T 0(X) the étale asymptotic relation of X.

For δ > 0, a Borel subset A ⊂ X and t ∈ [0, 1] let

Nδ(A, t) := {µ ∈ Nδ(X) : |µ(A)− t| ≤ δ} .

and for x, y ∈ X, F b Γ and r ≥ 0,

Nδ [(x, y), t, r, F ] :=

{
µ ∈ Nδ([x]F ∪ [y]F , t) :

∣∣∣∣µ([y]F )

µ([x]F )
− r
∣∣∣∣ ≤ δ} .

For r ≥ 0, C ∈ R let r∗ = r
1+r ∈ [0, 1) and

p̂(r, C) := H(r∗) + r∗C

where H : [0, 1]→ R is defined by H(r∗) = −r∗ log(r∗)− (1− r∗) log(1− r∗) with the usual convention
that 0 log(0) = 0. Note that for fixed C ∈ R, p̂(r, C) admits a unique global (and local) maximum
which is attained at r = exp(C).

19



Definition 4.1. Let F1, F2 b Γ. We say that a subset X0 ⊂ AΓ has trivial F1-overlaps within F2 if

(gy)|F2∩gF2
6= x|F2∩gF2

whenever g ∈ F2F
−1
1 \ {1Γ} and x, y ∈ X0.

Suppose that F1 ⊂ F2. In this case the condition above is just a local way to state that for any
z ∈ AΓ and g ∈ Γ \ {1Γ} such that z|F2

= x|F2
and (gz)|F2

= y|F2
, we must necessarily have that

F2 ∩ gF1 = ∅. In other words, the patterns x|F2 and y|F2 can only occur in such a way that the “F1-
center” of y does not intersect the “F2-center” of x. Next we will show that this condition provides
a way to define an endomorphism of X which replaces all occurrences of a pattern y|F2

by another
pattern x|F2

whenever they are exchangeable and x|F2\F1
= y|F2\F1

.

Lemma 4.2. Let F1 ⊂ F2 b Γ, (x, y) ∈ T 0
F1

(X) and suppose that {x, y} has trivial F1-overlaps within

F2. There exists a continuous Γ-equivariant map π : AΓ → AΓ such that π(X) ⊂ X and for every
z ∈ AΓ,

1. If z|F2
∈ {x|F2

, y|F2
}, then π(z)|F2

= x|F2
.

2. π(z)|F2 6= y|F2 .

Proof. Since (x, y) ∈ T 0
F1

(X), it follows that x|F2\F1
= y|F2\F1

. Let us define π : AΓ → AΓ as follows.

For z ∈ AΓ,

π(z)(g) =

{
x(h) if there is h ∈ F1 such that (hg−1z)|F2 = y|F2 ,

z(g) otherwise.

Let us first show that π is well defined. Let z ∈ AΓ and suppose there is g ∈ Γ and h, h′ ∈ F1 such
that (hg−1z)|F2 = y|F2 = (h′g−1z)|F2 . Let z′ = h′g−1z and γ = h′h−1, then we have (γ−1z′)|F2 =
z′|F2 = y|F2 . From F1 ⊂ F2 we get that γ ∈ F1F

−1
1 ⊂ F2F

−2
2 , while from the previous relation we get

that y|F2∩γF2
= (γy)|F2∩γF2

. As {x, y} (and in particular {y}) has trivial F1-overlaps within F2 we
conclude that γ = 1Γ and thus h = h′.

Now let z ∈ AΓ. If z|F2
∈ {x|F2

, y|F2
} it follows by definition that π(z)|F1

= x|F1
. Now let

g ∈ F2 \F1, if there were h ∈ F1 such that (hg−1z)|F2 = y|F2 , we would have that (gh−1y)|F2∩gh−1F2
∈

{x|F2∩gh−1F2
, y|F2∩gh−1F2

} which cannot hold as gh−1 ∈ F2F
−1
1 \{1Γ} and {x, y} has trivial F1-overlaps

within F2. From the argument above we deduce that we must have π(z)(g) = z(g) for g ∈ F2 \F1 and
thus π(z)|F2

= x|F2
.

Now suppose π(z)|F2
= y|F2

. By the previous argument, we couldn’t have had z|F2
= y|F2

and
thus there must be g ∈ F2 such that π(z)(g) 6= z(g). This implies that there is h ∈ F1 such that
(hg−1z)|F2 = y|F2 and thus (hg−1π(z))|F2 = x|F2 . This again cannot occur as gh−1 ∈ F2F

−1
1 and

{x, y} has trivial F1-overlaps within F2.
It is clear from the definition that π is continuous and Γ-equivariant. Now let z ∈ X. Since

(x, y) ∈ T 0
F1

(X) and F1 ⊂ F2 it follows that ξ : AΓ → AΓ given by

ξ(z) =

{
z|Γ\F2

∨ x|F2 if z|F2 = y|F2

z otherwise,

is a continuous self-map on X. It is clear that the fact that {x, y} has trivial F1-overlaps within F2

implies that the collection of maps {g−1ξg}g∈Γ pairwise commute. Thus for any finite finite F ⊂ Γ
the composition ξF :=

∏
g∈F g

−1ξg is a well defined self-map of X (independent of the order of
composition). For every x ∈ X and any finite F ⊂ Γ, π(x)|F coincides with ξF ′(x)|F for sufficiently
big F ′. From here it follows that π(X) ⊂ X.

20



Let us recall that a function f : X → R is said to be F -locally constant if f(x) = f(y) for every
x, y ∈ X such that x|F = y|F . In the following lemma we shall use the usual little o notation o(g(n))
to denote a function which goes to zero as n goes to infinity when divided by g(n).

Lemma 4.3. Let F1 ⊂ F2 b Γ such that F1F
−1
1 ⊂ F2, (x, y) ∈ T 0

F1
(X), t ∈ [0, 1] and f : X → R

an F1-locally constant function. Suppose that {x, y} has trivial F1-overlaps within F2 and that for all
δ > 0 there are infinitely many i ∈ N such that

ξ−1
σi (Nδ([x]F2

∪ [y]F2
, t)) 6= ∅.

Then for all r1, r2 ≥ 0 we have

inf
δ>0

lim sup
i→∞

(P (f,Nδ [(x, y), t, r1, F2] , σi)− P (f,Nδ [(x, y), t, r2, F2] , σi))

= t (p̂(r1,Ψf (x, y))− p̂(r2,Ψf (x, y))) .

Proof. Let F1, F2 b Γ, (x, y) ∈ T 0
F1

(X), t ∈ [0, 1] and f : X → R as in the statement. Lemma 4.2

provides the existence of a continuous Γ-equivariant map π : AΓ → AΓ such that π(X) ⊂ X and which
replaces any occurrence of the pattern y|F2

by the pattern x|F2
and which contains no occurrences of

the pattern y|F2 .
For every i ∈ N let πi : A

Vi → AVi be the map given by

πi(w)(v) = (π(ξσi,v(w)))(1Γ).

For i ∈ N, δ > 0 and r ≥ 0 let

Ωi(δ) = ξ−1
σi (Nδ([x]F2

∪ [y]F2
, t)),

Ωπ,i(δ) = πi(ξ
−1
σi (Nδ([x]F2 ∪ [y]F2 , t))),

Ωi(δ, r) = ξ−1
σi (Nδ[(x, y), t, r, F2]).

For w ∈ AVi , let us denote by Si(f, w) =
∑
v∈Vi f(ξσi,v(w)). Our main goal is to estimate the

expression

P (f,Nδ [(x, y), t, r, F2] , σi) =
1

|Vi|
log

 ∑
w∈Ωi(δ,r)

exp(Si(f, w))

 .

In order to do that, let us first fix w ∈ Ωi(δ, r). We shall first show that the difference Si(f, w) −
Si(f, πi(w)) is close to r∗t|Vi|Ψf (x, y). Intuitively, this happens because if v ∈ Vi is a sufficiently
good approximation (in the sense that the configurations ξσi,v(w) and ξσi,v(π(w)) “look like elements
of X” restricted to some large set), then the term f(ξσi,v(w)) − f(ξσi,v(π(w))) is non-zero only if
ξσi,v(w)|F2

= y|F2
, which occurs with probability close to r∗t due to w being in Ωi(δ, r).

Let us now proceed formally. As Σ is a sofic approximation sequence for Γ, the proportion of
vertices v ∈ Vi which are not F1F2-good is o(|Vi|) and thus∑

v∈Vi is not F1F2 good

(f(ξσi,v(w))− f(ξσi,v(πi(w)))) ≤ 2o(|Vi|)‖f‖∞ = o(|Vi|).

Suppose that v ∈ Vi is F1F2-good for σi. Using the fact that f is F1-local and the definition of πi,
we obtain that, as long as there is no g ∈ F1 such that ξσi,σi(g)v(w)|F2

= y|F2
, then

f(ξσi,v(w))− f(ξσi,v(πi(w))) = 0.
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Therefore we only need to consider the v for which there is some is g ∈ F1 such that ξσi,σi(g)v(w)|F2
=

y|F2 . Note that as v is F1F2-good and {x, y} have trivial F1-overlaps within F2, it follows that such a
g is unique and we have∑

h∈F1F
−1
1

(f(ξσi,σi(gh)v(w))− f(ξσi,σi(gh)v(π(w))) = Ψf (x, y).

Given δ > 0 as above, let r∗ = r
1+r and define δ− and δ+ by

δ− = r∗ − r − δ
1 + r − δ

, δ+ =
r + δ

1 + r + δ
− r∗.

As w ∈ Ωi(δ, r), it follows that the number Ni of v ∈ Vi such that ξσi,σi(gh)v(w)|F2
= y|F2

is
bounded above and below as follows

(r∗ − δ−)(t− δ)(|Vi| − o(Vi)) ≤ Ni ≤ (r∗ + δ+)(t+ δ)|Vi|.

Putting all of the previous estimates together, we obtain that

o(|Vi|) + (r∗ − δ−)(t− δ)|Vi|Ψf (x, y) ≤ Si(f, w)− Si(f, πi(w)) ≤ o(|Vi|) + (r∗ + δ+)(t+ δ)|Vi|Ψf (x, y).

For w′ ∈ Ωπ,i(δ), let us define Kw′(δ, r) =
∣∣π−1
i ({w′}) ∩ Ωi(δ, r)

∣∣ to be the number of w ∈ Ωi(δ, r)
such that πi(w) = w′. Note that we may always write

∑
w∈Ωi(δ,r)

exp(Si(f, w)) =
∑

w′∈Ωπ,i(δ)

 ∑
w∈Ωi(δ,r) : πi(w)=w′

exp(Si(f, w
′) + Si(f, w)− Si(f, πi(w)))

 .

Using the bounds we obtained for Si(f, w)− Si(f, πi(w)), we get that∑
w∈Ωi(δ,r)

exp(Si(f, w)) ≤
∑

w′∈Ωπ,i(δ)

Kw′(δ, r) exp(Si(f, w
′) + o(|Vi|) + (r∗ + δ+)(t+ δ)|Vi|Ψf (x, y))

≤
∑

w′∈Ωπ,i(δ)

exp(Si(f, w
′) + log(Kw′(δ, r)) + o(|Vi|) + (r∗ + δ+)(t+ δ)|Vi|Ψf (x, y)),

and∑
w∈Ωi(δ,r)

exp(Si(f, w)) ≥
∑

w′∈Ωπ,i(δ)

Kw′(δ, r) exp(Si(f, w
′) + o(|Vi|) + (r∗ − δ−)(t− δ)|Vi|Ψf (x, y))

≥
∑

w′∈Ωπ,i(δ)

exp(Si(f, w
′) + log(Kw′(δ, r)) + o(|Vi|) + (r∗ − δ−)(t− δ)|Vi|Ψf (x, y)).

Our next goal is to provide an estimate for log(Kw′(δ, r)). LetG(w′, x) := {v ∈ Vi : ξσi,v(w
′)|F2

= x|F2
}.

By our assumptions we have that for infinitely many values of i,

(t− δ)|Vi|+ o(|Vi|) ≤ |G(w′, x)| ≤ (t+ δ)|Vi|+ o(|Vi|).

Notice that any w ∈ AVi such that πi(w) = w′ is uniquely determined by the subset of vertices in
G(w′, x), which consists of the positions that initially held the pattern y|F2

and were erased by the
map πi. Using again that w ∈ Ωi(δ, r) we obtain that

(
G(w′, x)

br∗G(w′, x)c

)
≤ Kw′(δ, r) ≤

b(r∗+δ+)G(w′,x)c∑
k=d(r∗−δ−)G(w′,x)e

(
G(w′, x)

k

)
.
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It is easy to show using Stirling’s approximation that whenever n ∈ N and α ∈ (0, 1
2 ), then

log

(
n

bαnc

)
= (1 + o(1))H(α)n.

This immediately yields the lower bound

Kw′(δ, r) ≥
(

G(w′, x)

br∗G(w′, x)c

)
= exp((1 + o(1))H(r∗)(t− δ)|Vi|+ o(|Vi|)).

For the upper bound, let s ∈ (−δ−, δ+) such that the binomial coefficient(
G(w′, x)

b(r∗ + s)G(w′, x)c

)
is largest. We obtain the following upper bound for small enough δ,

Kw′(δ, r) ≤ d(δ+ − δ−)|G(w′, x)|e exp((1 + o(1))H(r∗ + s)(t+ δ)|Vi|+ o(|Vi|))
≤ |Vi| exp((1 + o(1))H(r∗ + s)(t+ δ)|Vi|+ o(|Vi|)).

Putting these two bounds together and taking logarithms, we obtain

o(|Vi|) + (t− δ)H(r∗)|Vi| ≤ log(Kw′(δ, r)) ≤ o(|Vi|) + (t+ δ)H(r∗ + s)|Vi|.

Now we can refine our previous bounds. Putting this last computation back in the previous formulas
we get

1

|Vi|
log

 ∑
w∈Ωi(δ,r)

exp(Si(f, w))

 ≤ 1

|Vi|
log

 ∑
w′∈Ωπi (δ)

exp(Si(f, w
′))


+
o(|Vi|)
|Vi|

+ (t+ δ)
(
H(r∗ + s) + (r∗ + δ+)Ψf (x, y)

)
.

and

1

|Vi|
log

 ∑
w∈Ωi(δ,r)

exp(Si(f, w))

 ≥ 1

|Vi|
log

 ∑
w′∈Ωπi (δ)

exp(Si(f, w
′))


+
o(|Vi|)
|Vi|

+ (t− δ)
(
H(r∗) + (r∗ − δ−)Ψf (x, y)

)
.

Let now r1, r2 ≥ 0 and notice that the first term in both bounds does not depend on r and thus
disappears when plugging the above bounds into the difference

P (f,Nδ[(x, y), t, r1, F2], σi)− P (f,Nδ[(x, y), t, r2, F2], σi).

Furthermore, the term o(|Vi|)/|Vi| vanishes when taking the limsup as i → ∞, also, the terms δ−, δ+

and s all go to 0 uniformly as δ goes to 0. We obtain thus that for all r1, r2 ≥ 0 we have

inf
δ>0

lim sup
i→∞

(P (f,Nδ [(x, y), t, r1, F2] , σi)− P (f,Nδ [(x, y), t, r2, F2] , σi))

= t (H(r∗1) + r∗1Ψf (x, y)− (H(r∗2) + r∗2Ψf (x, y))) .

= t (p̂(r1,Ψf (x, y))− p̂(r2,Ψf (x, y))) .

Which is what we wanted to show.
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Definition 4.4. Given x ∈ AΓ and F1 ⊆ F2 b Γ, we say that x is (F1, F2)-self-overlapping if

(gx)|(F2\F1)∩g(F2\F1) = x|(F2\F1)∩g(F2\F1) for some g ∈ F2F
−1
1 \ {1Γ}.

We say that x is non self-overlapping if for every F1 b Γ there exists F2 b Γ such that F1 ⊆ F2 and x
is not (F1, F2)-self-overlapping.

Notice that the condition of being (F1, F2)-self-overlapping is satisfied automatically if there is
g ∈ F2F

−1
1 \{1Γ} for which (F2 \F1)∩ g(F2 \F1) = ∅. Thus in the definition of non self-overlapping it

is understood that the sets F2 must satisfy that (F2 \F1)∩ g(F2 \F1) 6= ∅ for every g ∈ F2F
−1
1 \ {1Γ}.

The usefulness of this condition is justified in the following lemma.

Lemma 4.5. Let x ∈ AΓ be non self-overlapping. For every F1 b Γ and y ∈ AΓ such that (x, y) ∈
TF1

(X), there exists F2 b Γ with F1 ⊂ F2 such that {x, y} has trivial F1-overlaps within F2.

Proof. As x is non self-overlapping, there is F2 b Γ such that F1 ⊆ F2 and x is not (F1, F2)-self-
overlapping. Suppose that {x, y} does not have trivial F1-overlaps within F2, then there is g ∈
F2F

−1
1 \ {1Γ} and x′, y′ ∈ {x, y} such that

(gy′)|F2∩gF2 = x′|F2∩gF2 .

In particular, as (F2 \ F1) ∩ g(F2 \ F1) 6= ∅, we have

(gy′)|(F2\F1)∩g(F2\F1) = x′|(F2\F1)∩g(F2\F1).

Finally, as (x, y) ∈ TF1
(X), it follows that x|F2\F1

= y|F2\F1
and (gx)|g(F2\F1) = (gy)|g(F2\F1). We

obtain that
(gx)|(F2\F1)∩g(F2\F1) = x|(F2\F1)∩g(F2\F1).

Which contradicts the fact that x is not (F1, F2)-self-overlapping.

Lemma 4.6. Let Σ be a sofic approximation for Γ such that hΣ(Γ y X) ≥ 0 and let µ be an equilibrium
measure for a subshift X ⊂ AΓ with with respect to an F -locally constant function f : X → R and Σ.
Suppose also that (x, y) ∈ T 0(X), x is in the support of µ and x is non self-overlapping.

Then y is also in the support of µ and there exists a sequence of finite subsets Fn b Γ increasing
to Γ so that

lim
n→∞

µ([y]Fn)

µ([x]Fn)
= exp(Ψf (x, y)).

Proof. Choose a sequence of finite subsets F
(n)
1 b Γ which is increasing to Γ and such that F ⊂ F

(n)
1

and (x, y) ∈ T 0

F
(n)
1

(X) for all n ∈ N. By Lemma 4.5, for each n ∈ N there exists F
(n)
2 b Γ such that

F
(n)
1 ⊂ F

(n)
2 and {x, y} has trivial F

(n)
1 -overlaps within F

(n)
2 . Also, because x is in the support of µ,

we can define

t = µ([x|
F

(n)
2

] ∪ [y|
F

(n)
2

]) > 0 and r =
µ([y|

F
(n)
2

])

µ([x|
F

(n)
2

])
≥ 0.

For now fix n ∈ N and denote F2 := F
(n)
2 .

Note that µ ∈ Nδ[(x, y), t, r, F2] ⊂ Nδ([x|F2
] ∪ [y|F2

], t) for every δ > 0. From the assumption
that hΣ(Γ y X) ≥ 0 and the variational principle for sofic pressure (Theorem 3.8) we obtain that
hΣ(Γ y (X,µ)) ≥ 0. As µ ∈ Nδ[(x, y), t, r, F2], it follows that there is an infinite sequence of i ∈ N
such that ξ−1

σi (Nδ[(x, y), t, r, F2]) 6= ∅.
From Lemma 4.3 it follows that for every r1, r2 ≥ 0 we have
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lim
δ→0

lim sup
i→∞

(P (f,Nδ[(x, y), t, r1, F2], σi)− P (f,Nδ[(x, y), t, r2, F2], σi))

= t (p̂(r1,Ψf (x, y))− p̂(r2,Ψf (x, y))) .

As µ is an equilibrium measure for f , for every ε > 0 we can find δ2 > 0 such that for all sufficiently
big i ∈ N we have

|PΣ(f,Γ y (X,µ))− P (f,Nδ2 [(x, y), t, r, F2], σi)| < ε.

Fix any ε > 0. It follows that for any r′ ≥ 0 and sufficiently big i ∈ N we have

P (f,Nδ2 [(x, y), t, r′, F2], σi)− P (f,Nδ2 [(x, y), t, r, F2], σi) ≤ ε.

From the above relation we obtain that

p̂(r′,Ψf (x, y))− p̂(r,Ψf (x, y)) ≤ ε

t
.

Recall that for any C ∈ R, the expression p̂(r′, C) as a function of r′ ≥ 0 has a unique local
maximum at r′ = exp(C). We obtain that

p̂(exp(Ψf (x, y)),Ψf (x, y))− p̂(r,Ψf (x, y)) ≤ ε

t
.

The restriction to the first coordinate of the function p̂ which maps r′ 7→ p̂(r′,Ψf (x, y)) attains a
unique maximum at r′ = exp((Ψf (x, y))). Moreover, its inverse has two continuous branches which
meet on the maximum. It follows that for every η > 0 we can choose ε > 0 such that whenever the
above equation holds, then |r − exp(Ψf0

(x, y))| ≤ η. As ε was arbitrary, we obtain that

µ([y]
F

(n)
2

)

µ([x]
F

(n)
2

)
= r = exp((Ψf (x, y))).

As n ∈ N was arbitrary, we obtain that

lim
n→∞

µ([y]
F

(n)
2

)

µ([x]
F

(n)
2

)
= exp(Ψf (x, y)),

as we required. This equality automatically implies that both x and y are in the support of µ.

The remainder of the proof consists essentially on getting rid of the non self-overlapping hypothesis.
In order to do this, we will first show that the condition occurs almost surely with respect to the
uniform Bernoulli measure on the full Γ-shift, and then we use a trick involving a direct product to
take advantage of the above property on an arbitrary subshift.

Lemma 4.7. Let µ be the uniform Bernoulli measure on {0, 1}Γ. There exists a Borel subset X0 ⊂
{0, 1}Γ with µ(X0) = 1 such that every x ∈ X0 is non self-overlapping.

Proof. For any F1 ⊆ F2 b Γ and g ∈ F2F
−1
1 \ {1Γ}

µ
({
x ∈ {0, 1}Γ : (gx)|(F2\F1)∩g(F2\F1) = x|(F2\F1)∩g(F2\F1)

})
=

(
1

2

)|(F2\F1)∩g(F2\F1)|

.
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By a simple union bound, it follows that

µ
({
x ∈ {0, 1}Γ : x is (F1, F2)-self-overlapping

})
≤

∑
g∈F2F

−1
1 \{1Γ}

(
1

2

)|(F2\F1)∩g(F2\F1)|

≤ |F1||F2| max
g∈F2F

−1
1

2−|(F2\F1)∩g(F2\F1)|

≤ |F1|4|F1||F2| max
g∈F2F

−1
1

2−|F2∩gF2|.

As Γ is countably infinite, in order to prove the lemma it suffices to show that for any fixed

F1 b Γ there exists a sequence (F
(n)
2 )n≥1, with F1 ⊆ F

(n)
2 b Γ for all n ≥ 1, and with the property

that µ-almost surely the number of n’s for which x is (F1, F
(n)
2 )-self-overlapping is at most finite.

By the Borel–Cantelli lemma, it suffices in turn to find for each F1 b Γ a sequence (F
(n)
2 )n≥1 with

F1 ⊆ F (n)
2 b Γ for all n ≥ 1 such that

∞∑
n=1

µ
({
x ∈ {0, 1}Γ : x is (F1, F

(n)
2 )-self-overlapping

})
<∞.

By the previous calculation, it suffices to have that

∞∑
n=1

|F (n)
2 | max

g∈F (n)
2 F−1

1

2−|F
(n)
2 ∩gF (n)

2 | <∞.

Let F1 b Γ be an arbitrary non-empty finite set. If Γ is locally finite, then we can choose a sequence

(F
(n)
2 )n≥1 of finite subgroups of Γ, each containing F1 with |Fn| > n. In that case F

(n)
2 F−1

1 = F
(n)
2

and for any g ∈ F (n)
2 we have F

(n)
2 ∩ gF (n)

2 = F
(n)
2 . We deduce that in this case

∞∑
n=1

|F (n)
2 | max

g∈F (n)
2 F−1

1

2−|F
(n)
2 ∩gF (n)

2 | ≤
∞∑
n=1

|F (n)
2 |2−|F

(n)
2 | ≤

∞∑
n=1

n2−n <∞.

If Γ is not locally finite, there exists S b Γ which is a finite symmetric set with {1Γ} ∪ F1 ⊂ S and
so that the group generated by S is infinite. For any m ≥ 1 and g ∈ S3mF−1

1 we can choose h ∈ Γ
such that hSm ⊂ S3m ∩ gS3m and thus we have |S3m ∩ gS3m| ≥ |Sm|. As |S3n | ≤ |S|3n for all n it

follows that there exists a strictly increasing sequence of integers (kn)∞n=1 such that |S3kn−1 | ≥ |S3kn | 14
for all n ∈ N. For a sequence as above, let F

(n)
2 = S3kn . It follows that for each n ∈ N and every

g ∈ F (n)
2 F−1

1 ,

|F (n)
2 ∩ gF (n)

2 | ≥ |S3kn−1

| ≥ |S3kn | 14 = |F (n)
2 | 14 ,

and in particular

∞∑
n=1

|F (n)
2 | max

g∈F (n)
2 F−1

1

2−|F
(n)
2 ∩gF (n)

2 | ≤
∞∑
n=1

|F (n)
2 |2−|F

(n)
2 |

1
4 ≤

∞∑
n=1

n2
4
√
n <∞.

Lemma 4.8. Let Σ be a sofic approximation sequence for Γ. Let f ∈ C(X) and µ an equilibrium

measure on X for f . Consider X̃ = X × {0, 1}Γ, f̃ : X̃ → R given by f̃(x, y) = f(x) for every x ∈ X
and y ∈ {0, 1}Γ and let µ̃ be the product of µ and the uniform Bernoulli measure on {0, 1}Γ. We have

that µ̃ is an equilibrium measure for f̃ on X̃.
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Proof. Let ν denote the the uniform Bernoulli measure on {0, 1}Γ. As ({0, 1}Γ, ν) is a Bernoulli shift,
it follows by Theorem 6.3 of [10] that the measure-theoretic sofic entropy of the product system can
be expressed as follows,

hΣ(Γ y (X̃, µ̃)) = hΣ(Γ y (X,µ)) + hΣ(Γ y ({0, 1}Γ, ν)) = hΣ(Γ y (X,µ)) + log(2).

Let µ′ be an arbitrary Γ-invariant measure on X. We argue that for every Γ-invariant measure µ̃′

on X̃ with marginal µ′ on X we have

hΣ(Γ y (X̃, µ̃′)) ≤ hΣ(Γ y (X,µ′)) + log(2).

This follows form the fact that the number of w ∈ (A × {0, 1})Vi for which ξσi(w) ∈ Nδ(µ̃
′) is

bounded by 2|Vi| times the number of microstates u ∈ AVi such that ξσi(u) ∈ Nδ(µ′).
Using the definition of f̃ , we get that for every Γ-invariant measure µ̃′ with marginal µ′ on X, we

have ∫
f̃dµ̃′ =

∫
fdµ′.

Putting together all the previous computations, we get

PΣ(f̃ ,Γ y (X̃, µ̃′)) = hΣ(Γ y (X̃, µ̃′)) +

∫
f̃dµ̃′

= hΣ(Γ y (X̃, µ̃′)) +

∫
fdµ′

≤ log(2) + hΣ(Γ y (X,µ′)) +

∫
fdµ′

≤ log(2) + hΣ(Γ y (X,µ)) +

∫
fdµ

= hΣ(Γ y (X̃, µ̃)) +

∫
f̃dµ̃

= PΣ(f̃ ,Γ y (X̃, µ̃))

And therefore µ̃ is an equilibrium measure for f̃ on X̃.

The following result is the main theorem in the case where the function f is locally constant. We
shall first show it in this case and then generalize it to larger classes of functions in Section 5.

Theorem 4.9. Let Σ be a sofic approximation sequence for Γ. Consider a subshift X ⊂ AΓ with
hΣ(Γ y X) ≥ 0. Let F b Γ and suppose f : X → R is an F -locally constant function and µ an
equilibrium measure on X for f . Then µ is étale Gibbs with respect to f .

Proof. Let (x, y) ∈ T 0(X) such that x is in the support of µ. Let X̃, f̃ and µ̃ as in Lemma 4.8. Then

µ̃ is an equilibrium measure for f̃ on X. Now let (x′, y′) ∈ T ({0, 1}Γ) = T 0({0, 1}Γ) such that x′ is
non self-overlapping (its existence assured by Lemma 4.7).

Then it follows that ((x, x′), (y, y′)) ∈ T 0(X̃), (x, x′) is in the support of µ̃, and (x, x′) is non
self-overlapping. By Lemma 4.6 there exists a sequence of finite sets Fn b Γ increasing to Γ such that

lim
n→∞

µ̃([(y, y′)]Fn)

µ̃([(x, x′)]Fn)
= exp(Ψf̃ ((x, x′), (y, y′))).

Let ν be the uniform Bernoulli measure on {0, 1}Γ. By definition we have µ̃ = µ× ν, therefore on
the one hand we get for any K b Γ

µ̃([(y, y′)]K)

µ̃([(x, x′)]K)
=
µ([y]K)ν([y′]K)

µ([x]K)ν([x′]K)
=
µ([y]K)

µ([x]K)
.

27



On the other hand, using that f̃(x, x′) = f(x) for every (x, x′) ∈ X̃, we get

exp(Ψf̃ ((x, x′), (y, y′))) = exp(Ψf (x, y)).

Hence we conclude that

lim
n→∞

µ([y]Fn)

µ([x]Fn)
= exp(Ψf (x, y)).

For every x in the support of µ. By Lemma 2.7 it follows that there is a Borel set X ′ ⊂ X with
µ(X \X ′) = 0 such that for every (x, y) ∈ X ×X ′ ∩ T 0(X) we have

Dµ,T 0(X)(x, y) = lim
F↗Γ

µ([y]F )

µ([x]F )
.

From the above we obtain that up to a µ-null set

Dµ,T 0(X)(x, y) = exp(Ψf (x, y)).

And thus µ is étale Gibbs for f .

Before closing up this section, we show that the condition that hΣ(Γ y X) ≥ 0 cannot be removed.

Example 4.10. Let F2 be the free group on two generators a, b and consider the subshift of finite
type X ⊂ (Z/4Z)F2 given by the algebraic condition

X = {x ∈ (Z/4Z)F2 : x(gs) = x(g) + 1 mod 2, for s ∈ {a, b}}.

This action is topologically conjugate to direct product of the full F2-shift on two symbols times the
action on Z/2Z on which both generators act non-trivially. It is known [10, Theorem 4.1] that if Σ is a
sofic approximation sequence which is “far from bipartite” (for instance one obtained by choosing the
homomorphisms σi : F2 → Sym(Vi) to be generated by σi(a) and σi(b) and choosing those uniformly
at random) then F2 y Z/2Z admits no models for large enough i and thus hΣ(Γ y X) = −∞. In this
setting, every invariant measure is an equilibrium measure for Σ (with respect to f = 0) but the unique
Gibbs measure of the system is the product of the uniform Bernoulli measure on the full F2-shift and
the uniform measure on Z/2Z.

5 Lanford–Ruelle theorem beyond locally constant functions

In this section we extend the conclusion of Theorem 4.9 beyond locally constant functions, and in
particular provide a proof of Theorem A, and more generally of Theorem B. The argument is essentially
an application of abstract functional analysis of convex functions on topological vector spaces. Our
basic strategy here closely follows the original approach of Lanford and Ruelle (see Appendix A of [26]),
with a slight deviation which we discuss below.

By a continuous norm on a topological vector space V we mean a function ‖ · ‖ : V → [0,∞)
satisfying the axioms of a norm which is continuous with respect to the topology that makes V a
topological vector space. Note that the topology induced on V by the norm ‖·‖ need not coincide with
the given topology of V . A typical example of a topological vector space that admits a continuous
norm is C∞([0, 1]), where the uniform norm is one example for a continuous norm. The following
functional-analytic result is the essence of our argument:

Proposition 5.1. Let V be a topological vector space which admits a continuous norm. Let V denote
the completion of V with respect to that norm. Let f : V → R be a continuous convex function, and
ψ : V → V be a continuous function. Suppose that there exists a dense subset A ⊂ V such that if v̄ ∈ A,
then there exists a tangent functional w̄ ∈ V ∗ of f at v̄ with norm at most 1, such that w̄(ψ(v̄)) ≥ 0.

Then for every v ∈ V and every tangent functional w ∈ V ∗ of f at v we have w(ψ(v)) ≥ 0.
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Proof. The first step in the proof is to show that the set V0 ⊂ V consisting of those v ∈ V for which
there exists a tangent functional w ∈ V ∗ of f at v with norm at most 1 such that w(ψ(v)) ≥ 0, is
closed. Since A ⊂ V0 and A is dense in V , it would follow that V0 = V .

Fix v ∈ V . Let (vα)α∈D be a net which takes values on A and converges to v. For each α ∈ D,

choose a tangent functional wα ∈ V
∗

of f at vα with norm at most 1, such that wα(ψ(vα)) ≥ 0.

By weak-∗ compactness of the unit ball in V
∗

we can pass to a subnet and assume that (wα)α∈D
converges in the weak-∗ topology to some w ∈ V ∗. Then w is a tangent functional of f at v whose
norm is bounded by 1.

Fix ε > 0. By continuity of ψ, it follows that (ψ(vα))α∈D converges to ψ(v). Since all wα’s have
norm at most 1, (wα(ψ(vα))−wα(ψ(v)))α∈D converges to 0. Furthermore, as wα(ψ(vα)) ≥ 0, it follows
that lim infα wα(ψ(v)) ≥ 0. Finally, as (wα)α∈D converges to w in the weak-∗ topology, it follows that
(wα(ψ(v)))α∈D converges to w(ψ(v)), so w(ψ(v)) ≥ 0 and thus v ∈ V0. This shows that V0 is closed.

Now fix some arbitrary v ∈ V and suppose ω ∈ V ∗ is a tangent functional for f at v. Our goal is
to prove that ω(ψ(v)) ≥ 0. Let ε > 0 be arbitrary. It suffices to prove that ω(ψ(v)) + ε > 0. Choose
v′ ∈ V such that ‖ψ(v) − v′‖ < ε

2‖w‖∗ . Since |ω(ψ(v)) − ω(v′)| ≤ ‖w‖∗‖ψ(v) − v′‖ < ε
2 , it suffices to

show that ω(v′) + ε
2 ≥ 0.

The function F : R → R given by F (t) = f(v + tv′) is convex. Now let wt ∈ V
∗

be a tangent
functional at v+ tv′, it follows that for any t′ ∈ R we have F (t+ t′)−F (t) ≥ wt(t′v′). In particular, if
F is differentiable at t then for every tangent wt of f at v + tv′ we have wt(v

′) = F ′(t). By convexity
of F it follows that the left derivative of F at 0, denoted by F ′(0−), satisfies F ′(t) ≤ F ′(0−) for every
t < 0 where F is differentiable, which occurs for all but a countable set of t’s. Since w(v′) ≥ F ′(0−)
we have in particular:

w(v′) ≥ lim inf
t→0−

wt(v
′)

Using the result from the first part of the proof, for any t ∈ R we may choose a tangent wt of f at
v + tv′ with norm at most 1, such that wt(ψ(v + tv′)) ≥ 0. We have the following estimates:

|wt(ψ(v + tv′))− wt(v′)| ≤ ‖ψ(v + tv′)− v′‖ ≤ ‖ψ(v + tv′)− ψ(v)‖+
ε

2
.

The inequality on the left follows because ‖wt‖∗ ≤ 1 for every t ∈ R. As both ψ : V → V and the
norm ‖ · ‖ on V are continuous, it follows that ‖ψ(v + tv′)− ψ(v)‖ converges to 0 as t converges to 0.
From here we obtain that lim inft→0− wt(v

′) + ε
2 ≥ 0. Thus, w(v′) + ε

2 ≥ 0.

The original argument of Lanford and Ruelle from [26] implicitly proves a rather similar statement.
A fundamental difference is that in the argument involved in their article, the topological vector space
V has additional properties that guarantee that the convex function f is differentiable at a residual
set of points. Next a variant of Mazur’s lemma proven in [25] is invoked to show that every tangent
functional of f at any v ∈ V is in the closed convex-hull of tangent functionals at differentiable points,
from which the conclusion follows. In contrast, in Proposition 5.1 above we do not assume much
knowledge about the topological and functional-analytic properties of the topological vector space V
itself.

In order to apply Proposition 5.1 to our setting, we need the following characterization of measures
which are étale Gibbs:

Lemma 5.2. Let f : X → R be such that the T (X)-cocycle Ψf is well defined and continuous. A
probability measure µ is étale Gibbs for f if and only if for any homeomorphism γ : X → X such that
(x, γ(x)) ∈ T 0(X) for µ-almost every x ∈ X, and any h ∈ C(X) we have∫

X

h(γ(x))− exp(Ψf (x, γ(x)))h(x)dµ ≥ 0.
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Proof. On the one hand, if µ is étale Gibbs for f , it follows that

Dµ,T 0(X)(x, y) = exp(Ψf (x, y)) up to a µ-null set.

Therefore for any homeomorphism γ of X which preserves T 0(X) and h ∈ C(X) we have∫
X

h(γ(x))dµ =

∫
X

h(x)d(µ ◦ γ) =

∫
X

exp(Ψf (x, γ(x)))h(x)dµ.

From here the inequality follows (as an equality). Conversely, replacing h by −h, for every h ∈ C(X)
and homeomorphism γ of X which preserves T 0(X), we obtain the equality∫

X

h(γ(x))dµ =

∫
X

exp(Ψf (x, γ(x)))h(x)dµ.

Because µ is a Borel measure on X, the Radon-Nikodým derivative of a Borel measure ν � µ is
characterized (up to a µ-null set) by the property that

∫
hdν =

∫
h dνdµdµ for any h ∈ C(X). It follows

that for any homeomorphism γ of X which preserves T 0(X) we have dµ◦γ
dµ (x) = exp(Ψf (x, γ(x)))

for µ-almost every x ∈ X. Because the equivalence relation T 0(X) is the orbit equivalence of the
homeomorphisms Ip,q, it follows that exp(Ψf (x, y)) is the Radon-Nikodým cocycle of µ with respect
to the equivalence relation T 0(X) and thus that µ is étale Gibbs for f .

Let us recall that the metric ρT 0(X) is defined on all f, g ∈ C(X) such that the T 0(X)-cocycles
Ψf ,Ψg are well defined and continuous. It is given by

ρT 0(X)(f, g) = ‖f − g‖∞ + dT 0(X)(Ψf ,Ψg).

Where dT 0(X) is the metric from Definition 2.5.
Th definition of ρT 0(X) implicitly sets the stage for a space of potentials where our extension scheme

applies.

Theorem 5.3. (Theorem B) Let Σ be a sofic approximation sequence for Γ, X be a subshift such
that hΣ(Γ y X) ≥ 0, and let f ∈ C(X) be a ρT 0(X)-limit of locally constant functions. Then any
equilibrium measure µ on X for f with respect to Σ is étale Gibbs with respect to f .

Proof. Let V denote the space of functions f ∈ C(X) that are ρT 0(X)-limit of locally constant functions.
Then ρT 0(X) induces a metric on V which makes it a topological vector space. It is clear that the locally
constant functions are dense in V and that the uniform norm is continuous on V . Since the locally
constant functions are also dense in C(X), it follows that the metric completion V of V with respect
to the uniform norm is (up to a natural isomorphism) C(X). Also the map f 7→ Ψf is well defined on
V and defines a continuous linear function from V to the space of continuous T 0(X)-cocycles.

By Proposition 3.10, the map Π: C(X)→ R given by Π(f) = PΣ(Γ y X, f) is a convex continuous
map and the equilibrium measures for f ∈ C(X) are all tangent functionals of Π at f . Choose f0 ∈ V
and let γ be a homeomorphism of X such that (x, γ(x)) ∈ T 0(X) for every x ∈ X, and let h ∈ C(X).

Let A be the subspace of V given by the locally constant functions and ψ : V → C(X) be given by
ψ(f)(x) = h(γ(x))−Ψf (x, γ(x))h(x). Continuity of ψ follows from continuity of the map f 7→ Ψf on V .
Since any subshift is expansive the measure-theoretic sofic entropy is an upper semi-continuous function
of the measure (as in [17, Theorem 2.1]). In particular for any f ∈ C(X) there exists an equilibrium
measure on X (with respect to Σ). Fix f1 ∈ A, by Theorem 4.9, it follows that any equilibrium
measure µ1 at f1 is étale Gibbs with respect to Σ. By Proposition 3.10 any equilibrium measure
at f1 is a tangent functional µ1 for the topological sofic pressure function Π: C(X) → [−∞,+∞].
By Lemma 5.2 this implies that an equilibrium measure µ1 at f1 satisfies

µ1(ψ(f1)) =

∫
X

h(γ(x))−Ψf1
(x, γ(x))h(x)dµ1 ≥ 0.
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Applying Proposition 5.1, it follows that for every f0 ∈ V and every tangent functional µ for Π at
f0 we have

µ(ψ(f0)) =

∫
X

h(γ(x))−Ψf0
(x, γ(x))h(x)dµ ≥ 0.

It follows, again by Lemma 5.2, that every equilibrium measure µ at f0 ∈ V is étale Gibbs for f0

with respect to Σ.

5.1 Absolutely summable interactions

Definition 5.4. An interaction on a space of configurations X is a real valued function on the
X-admissible patterns P (X). Given an interaction Φ: P (X) → R and F b Γ we denote by ΦF
the restriction of Φ to PF (X). An interaction Φ on X a shift space X is translation-invariant if
Φ(p) = Φ(g(p)) for every g ∈ Γ and p ∈ P (X). An interaction Φ is called absolutely-summable (also
called norm-summable) if

‖Φ‖ :=
∑

1Γ∈FbΓ

‖ΦF ‖∞ < +∞,

where ‖ΦF ‖∞ = maxp∈PF (X) |Φ(p)| is the uniform norm on the (finite-dimensional) space RPF (X).

A translation-invariant interaction Φ is of finite-range if there exists F0 b Γ such that ΦF is
identically zero whenever F is not contained in gF0 for some g ∈ Γ. When Γ is a finitely generated
group, this is equivalent to the statement that Φ is supported on patterns whose supports have bounded
diameter.

The space of absolutely-summable interactions is a Banach space with respect to the above norm [6,
Proposition 2.19]. The subspace of finite-range interactions is dense.

We now discuss a procedure to obtain a continuous map fΦ : X → R from a absolutely-summable
interaction Φ, following Ruelle [37] (in the context of Zd-subshifts). Let Pc(Γ) denote the space of

finite non-empty subsets of Γ. Let P̃c(Γ) ⊂ Pc(Γ) be a subset containing exactly one representative in

each Γ-orbit. Namely, for every F ∈ Pc(Γ) the set {gF : g ∈ Γ} contains exactly one element of P̃c(Γ).
Let FixΓ(F ) be the set of g ∈ Γ such that gF = F . Define fΦ : X → R as

fΦ(x) :=
∑

F∈P̃c(Γ)

1

|FixΓ(F )|
Φ(x|F ).

Let us remark that in the case where Γ has no torsion (as in the case of Zd in the work of Ruelle),
then FixΓ(F ) is trivial and can be removed from the equation above.

An alternative, and perhaps more natural, way of defining the potential is to just average over all
translates of a finite set which contain the identity, namely, we can define hΦ : X → R by

hΦ(x) :=
∑

1Γ∈FbΓ

1

|F |
Φ(x|F ).

Let us notice that these two definitions are in general different, and it is not even clear that they
define the same class of functions. However, they do define the same T (X)-cocycle whenever it is
well-defined. Indeed,
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ΨfΦ(x, y) =
∑
g∈Γ

(fΦ(gy)− fΦ(gx))

=
∑
g∈Γ

∑
F∈P̃c(Γ)

1

|FixΓ(F )|
(
Φ(y|g−1F )− Φ(x|g−1F )

)
=
∑
FbΓ

(Φ(y|F )− Φ(x|F ))

=
∑
g∈Γ

∑
g∈FbΓ

1

|F |
(Φ(y|F )− Φ(x|F ))

=
∑
g∈Γ

∑
1Γ∈FbΓ

1

|F |
(
Φ(y|g−1F )− Φ(x|g−1F )

)
=
∑
g∈Γ

(hΦ(gy)− hΦ(gx)) = ΨhΦ(x, y)

Consequently, any Gibbs measure for fΦ is a Gibbs measure for hΦ and vice versa. In what follows
we will use Ruelle’s definition, fΦ, because it has the advantage that all locally constant maps can be
obtained from finite-range interactions.

Given any interaction Φ for which fΦ can be defined, we will say that a measure on X is (étale)
Gibbs with respect to Φ if it is (étale) Gibbs with respect to fΦ. This definition is consistent with the
original definition of Lanford and Ruelle [26].

Remark 5.5. Any finite-range interaction Φ induces a locally constant function fΦ : X → R. There-
fore Theorem 4.9 holds for finite-range interactions.

The potential fΦ is continuous. Furthermore, the map Φ 7→ fΦ is a bounded linear map from
the Banach space of absolutely-summable interactions to the space of continuous functions with the
uniform norm.

To simplify the notation, let us denote the T (X)-cocycle by ΨΦ instead of ΨfΦ and notice that for
every (x, y) ∈ T (X) we have

ΨΦ(x, y) =
∑
FbΓ

(Φ(y|F )− Φ(x|F )) .

Whenever Φ is absolutely-summable and translation-invariant, one can show that for any (x, y) ∈
TF (X) we have that |ΨΦ(x, y)| ≤ 2|F |‖Φ‖ (see Proposition 3.1 of [6]) and therefore ΨΦ is a well-
defined Γ-invariant T (X)-cocycle. A direct computation shows that ΨΦ is continuous.

Let

NS(X) := {fΦ : Φ is an absolutely-summable, translation-invariant interaction on X} .

Let us endow NS(X) with the norm given by

‖f‖NS := inf{‖Φ‖ : f = fΦ}.

It is straightforward to verify that ‖·‖NS is a semi-norm. The fact that it is a norm follows from the
fact that ‖fΦ‖∞ ≤ ‖fΦ‖NS. which is direct from the definition of fΦ.

First, let us show that fΦ 7→ ΨΦ is a continuous linear map from NS(X) to the topological vector
space of continuous, translation-invariant T 0(X)-cocycles. Let f ∈ NS(X) and choose Φ such that
f = fΦ. Let also F b Γ. By Proposition 3.1 of [6] we have that for any (x, y) ∈ TF (X) we have

|Ψf (x, y)| = |ΨΦ(x, y)| ≤ 2|F |‖Φ‖.
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In particular, the bound is still valid for (x, y) ∈ T 0
F (X). Taking infimum over all Φ such that f = fΦ

we get that
|Ψf (x, y)| ≤ 2|F |‖f‖NS for every (x, y) ∈ T 0

F (X).

Therefore the map fΦ 7→ ΨΦ is continuous.

Proposition 5.6. Any f ∈ NS(X) is a ρT 0(X)-limit of locally constant functions.

Proof. Let Φ be a translation-invariant, absolutely summable interaction with f = fΦ. Let (Fn)n∈N
be an enumeration of all finite subsets of Γ modulo translation. For each n ≥ 1 consider the in-
teraction Φ(n) which coincides with Φ on all patterns whose supports is a translation of Fk for
k ≤ n, and is 0 everywhere else. It follows that Φ(n) is a finite-range, translation-invariant inter-
action and that fn := fΦ(n) is a locally constant function. To complete the proof, it suffices to show
that limn→∞ ρT 0(X)(fn, f) = 0. Indeed, as Φ is absolutely-summable, we have that

lim
n→∞

‖Φ− Φ(n)‖ =

∞∑
k=n+1

‖ΦFk‖∞ = 0.

From this it follows that

dT 0(X)(Ψfn ,Ψf ) ≤
∞∑
j=1

1

2j
min

{
1, 2|Fj |‖Φ− Φ(n)‖

}
→ 0 as n→∞.

Also, ‖f − fn‖∞ ≤ ‖f − fn‖NS → 0 as n→∞. This shows that limn→∞ ρT 0(X)(fn, f) = 0.

Theorem 5.7. (Theorem A) Let Σ be a sofic approximation sequence for Γ, X be a subshift that
satisfies the topological Markov property such that hΣ(Γ y X) ≥ 0, Φ an absolutely-summable interac-
tion on X and µ an equilibrium measure on X for Φ with respect to Σ. Then µ is Gibbs with respect
to Φ.

Proof. The proof follows from putting together Theorem B, Proposition 5.6 and Proposition 2.11.
Indeed, by Proposition 5.6 we have that any map induced by a translation-invariant, absolutely-
summable interaction is a ρT 0(X)-limit of locally constant functions, and thus from Theorem B it
follows that every equilibrium measure is étale Gibbs. Finally, as the space satisfies the topological
Markov property, Proposition 2.11 tells us that T (X) = T 0(X) and thus we may replace “étale Gibbs”
by “Gibbs”.

5.2 Functions with F-summable variation

Some authors rather than using a space of interactions, directly use a space of continuous functions
f : X → R to model “the potential energy”, for instance [27, 23]. In this setting, we introduce the
notion of functions with summable variation with respect to a filtration of Γ, that is, an increasing
sequence of finite subsets of Γ which cover it. This notion of convergence generalizes the concept of
d-summable variation of [28], the notion of “regular local energy functions” of [23] and the notion of
“shell-regular potentials” of [8]. We show that every function with this property satisfies the equivalent
statement of the Lanford–Ruelle theorem.

We now define a class of potentials which generalizes the space of functions having “d-summable
variation” in the case Γ = Zd as in [27] and show that they are ρT 0(X)-limits of locally constant
functions, thus recovering [27, Theorem 3.1] and generalizing it the case where the acting group is an
arbitrary sofic group.
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Definition 5.8. We call a sequence F = (Fn)∞n=1 of finite subsets of Γ a filtration of Γ if Fn ⊂ Fn+1

for all n and Γ =
⋃∞
n=1 Fn. Given f : X → R and S b Γ denote

VarS(f) := sup {|f(x)− f(y)| : x, y ∈ X and x|S = y|S} ,

Given a filtration F = (Fn)∞n=1 of Γ and S b Γ, let

‖f‖SV(F),S :=

∞∑
n=1

|Fn+1S \ FnS|VarFn(f).

A function f : X → R has F-summable variation if ‖f‖SV(F),S < ∞ for all S b Γ. We denote the
space of functions on X with F-summable variation by SVF(X).

One may verify that any function with F-summable variation is continuous, and that any locally
constant function has F-summable variation with respect to any filtration of Γ. We endow the vector
space SVF(X) with the topology induced by the countable collection of semi-norms (‖·‖SV(F),S)SbΓ

together with the uniform norm ‖ · ‖∞. In general, SVF(X) is not a Banach space, but it may be
verified that it is always a Fréchet space (we shall not make use of this property).

Particularly, when Γ = Zd and F = (Fn)∞n=1 is the filtration of Zd given by Fn = {−n, . . . , n}d,
then ‖f‖SV(F),S <∞ for all S b Zd if and only if

∑∞
n=1 n

d−1 VarFn(f) < +∞, so in that case SVF(X)
is exactly the space of function with d-summable variation as defined in [27] or the space of “regular
local energy functions” as defined in [23, Section 5]. More generally, if Γ is a finitely generated group
with “bounded sphere ratios” and F is the filtration corresponding to balls with respect to some finite
symmetric generating set, then SVF(X) is exactly the space of “shell-regular potentials” as defined
in [8, Section 5].

For the rest of this section let F = (Fn)∞n=1 be an arbitrary filtration on the countable group Γ.
We shall prove that any f ∈ SVF(X) is a ρT 0(X)-limit of locally constant functions. It it is clear
that convergence in SVF(X) implies ‖·‖∞-convergence, so we only need to verify that locally constant
functions are dense, and that the map f 7→ Ψf from SVF(X) to the space of continuous T 0(X)-
cocycles is continuous. Let us mention that these two proofs extend almost verbatim from the well
known “classical case” Γ = Zd, and F = ({−n, . . . , n})d)∞n=1.

Lemma 5.9. The set of locally constant functions is dense in SVF(X).

Proof. Let f ∈ SVF(X). For every n ≥ 1 consider the locally constant function fn : X → R given by

fn(x) := sup{f(y) : y|Fn = x|Fn}.

We claim that (fn)∞n=1 converges to f in SVF(X). Indeed, as f is continuous it is clear that ‖f − fn‖∞
converges to 0. Therefore it suffices to check that ‖f − fn‖SV(F),S converges to 0 for every S b Γ. This
follows directly from the fact that VarFm(f − fn) ≤ 2 VarFn(f) for every m ≤ n.

Lemma 5.10. For every function f : X → R with F-summable variation, S b Γ and (x, y) ∈ TS(X),
the series defining Ψ(x, y) in Definition 2.4 is absolutely convergent. Hence, Ψf is a well-defined Γ-
invariant T (X)-cocycle and is furthermore continuous. Moreover, the map f 7→ Ψf from SVF(X) to
the space of continuous T 0(X)-cocycles is continuous. Consequently, convergence in SVF(X) implies
ρT 0(X)-convergence.

Proof. Let f ∈ SVF(X), S b Γ and (x, y) ∈ TS(X). Let us write F0 = ∅. As F is a filtration we may
write Γ as the disjoint union

Γ =

∞⋃
n=0

(Fn+1S
−1 \ FnS−1).
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Therefore we may write∑
g∈Γ

|f(gy)− f(gx)| =
∞∑
n=0

∑
g∈Fn+1S−1\FnS−1

|f(gy)− f(gx)|.

Now for every g ∈ Γ, we have the trivial bound |f(gy)− f(gx)| ≤ 2‖f‖∞. Moreover, as (x, y) ∈ TS(X)
it follows that if g ∈ Γ \ FnS−1 then (gx)|Fn = (gy)|Fn and thus |f(gy)− f(gx)| ≤ VarFn(f), so∑

g∈Γ

|f(gy)− f(gx)| ≤ 2|F1S
−1|‖f‖∞ +

∞∑
n=1

|Fn+1S
−1 \ FnS−1|VarFn(f)

= 2|F1S
−1|‖f‖∞ + ‖f‖SV(F),S−1 .

We conclude that the series defining Ψf (x, y) is indeed absolutely convergent for every S b Γ and
(x, y) ∈ TS(X).

Let us now show that Ψf : T (X) → R is continuous. As explained in Section 2.2, it suffices to
show that Ψf |TS(X) is continuous for every S b Γ. More explicitly, we need to show that for every
S b Γ and ε > 0 there exists K b Γ such that if (x, y), (x′, y′) ∈ TS(X) are such that x|K = x′|K and
y|K = y′|K then |Ψf (x, y)−Ψf (x′, y′)| ≤ ε.

Fix S b Γ and ε > 0. Let N,M ∈ N and choose K b Γ such that SF−1
N FM b K. Let

(x, y), (x′, y′) ∈ TS(X) such that x|K = x′|K and y|K = y′|K . Then it follows that for every
g ∈ FNS−1 we have g(x)|FM = g(x′)|FM and g(y)|FM = g(y′)|FM and thus |f(gy)−f(gy′)| ≤ VarFM (f)
and |f(x) − f(x′)| ≤ VarFM (f). Since (x, x′) ∈ TS(X) and (y, y′) ∈ TS(X), for every n ∈ N and
g ∈ Γ \ FnS−1 we have |f(gy)− f(gx)| ≤ VarFn(f) and |f(gy′)− f(gx′)| ≤ VarFN (f).

Putting all the above bounds together yields:

|Ψf (x, y)−Ψf (x′, y′)| ≤
∑

g∈FNS−1

(|f(gy)− f(gy′)|+ |f(gx)− f(gx′)|)

+

∞∑
n=N

∑
g∈Fn+1S−1\FnS−1

(|f(gy)− f(gx)|+ |f(gy′)− f(gx′)|)

≤ 2|FNS−1|VarFM (f) + 2

∞∑
n=N

|Fn+1S
−1 \ FnS−1|VarFn(f).

Since f ∈ SVF(X), there exists N ∈ N such that 2
∑∞
n=N |Fn+1S

−1 \ FnS−1|VarFn(f) ≤ ε
2 , and

there exists M ∈ N such that 2|FNS−1|VarFM (f) ≤ ε
2 . Now for any K b Γ satisfying SF−1

N FM ⊂ K,
it follows that if (x, y), (x′, y′) ∈ TS(X) are such that x|K = x′|K and y|K = y′|K then |Ψf (x, y) −
Ψf (x′, y′)| ≤ ε. This proves that Ψf is continuous.

Finally, we show that the map f 7→ Ψf from SVF(X) to the space of continuous T 0(X)-cocycles
is continuous. Since f 7→ Ψf is linear, it suffices to prove continuity at 0 for every restriction of the
domain of the image to T 0

S (X). This follows directly from the estimate

|Ψf (x, y)| ≤ 2|F1S
−1|‖f‖∞ + ‖f‖SV(F),S−1 for every (x, y) ∈ T 0

S (X).

Theorem 5.11. Let Σ be a sofic approximation sequence for Γ, X be a subshift with the topological
Markov property such that hΣ(Γ y X) ≥ 0, f : X → R a function with F-summable variation with
respect to a filtration F of Γ and µ an equilibrium measure on X for f with respect to Σ. Then µ is
Gibbs with respect to f .

Proof. The combination of Lemmas 5.9 and 5.10 along with continuity of the uniform norm shows any
function with F-summable variation is a ρT 0(X)-limit of locally constant functions, so the result follows
from Theorem B and Proposition 2.11.
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6 Applications

In this brief section we present a few applications of our main theorem. Our first result concerns
dynamical systems which admit a unique Gibbs measure with respect to some f ∈ C(X). There are
several results in the literature ensuring uniqueness of Gibbs measures, see for instance [19, 45].

Theorem 6.1. Let Γ be a sofic group and X ⊂ AΓ be a subshift with the topological Markov property
which admits a unique Gibbs measure µ with respect to f ∈ C(X) which is a ρT 0(X)-limit of locally
constant functions. For any sofic approximation sequence Σ of Γ such that hΣ(Γ y X) ≥ 0, we have
that µ is translation-invariant and furthermore, it is the unique equilibrium measure on X for f with
respect to Σ.

Proof. Let us fix Σ such that hΣ(Γ y X) ≥ 0. By Proposition 3.7 it follows that the entropy function
is upper semi-continuous and thus there exists a (translation-invariant) equilibrium measure on X for
f . Theorem B implies every equilibrium measure on X for f is Gibbs with respect to f and thus we
conclude that any such measure must coincide with the unique Gibbs measure µ with respect to f .

A consequence of Theorem 6.1, which has already been mentioned in the introduction, is uniqueness
of the equilibrium measure, and thus independence of the equilibrium measure on the sofic approxima-
tion sequence, for single-site potentials over a full shift: suppose f : AΓ → R is a single-site potential
on AΓ, that is, f(x) = f(y) if x(1Γ) = y(1Γ) (and thus we may identify f with a function f : A → R).
Then there is a unique Gibbs measure µf with respect to f which is Bernoulli and given by

µf ({x ∈ AΓ : x(g) = a}) =
exp(f(a))∑
b∈A exp(f(b))

for every g ∈ Γ.

Theorem 6.1 yields that µf is indeed the unique equilibrium measure on AΓ for the single-site
potential f . As mentioned in the introduction, the question of uniqueness in this setting was asked
in [16, Question 5.4] and answered via a direct argument in [10, Example 7]. It also received a positive
answer via the theory of Rokhlin entropy [40, Corollary 3.6].

Theorem 6.1 can be combined with more sophisticated criteria for uniqueness of Gibbs measures
to obtain uniqueness of equilibrium measures on more complicated systems. For instance, van der
Berg’s percolation criterion in [45, Corollary 1] implies that for any finitely generated sofic group, the
Ising model has a unique Gibbs measure at sufficiently high temperature. Theorem 6.1 then implies
uniqueness of the equilibrium measure.

A second application is the existence of Gibbs measures for any subshift X ⊂ AΓ with the topo-
logical Markov property for which there is some sofic approximation sequence with nonnegative sofic
topological entropy. This generalizes a result of Alpeev [2].

Theorem 6.2. Let Γ be a sofic group and X ⊂ AΓ be a subshift with the topological Markov property
for which there exists a sofic approximation sequence Σ of Γ with hΣ(Γ y X) ≥ 0. For any f ∈ C(X)
which is a ρT 0(X)-limit of locally constant functions there exists a Gibbs measure on X with respect to
f .

Proof. Let us fix Σ such that hΣ(Γ y X) ≥ 0. By Proposition 3.7 the entropy function is upper semi-
continuous and thus there exists an equilibrium measure µ on X for f with respect to Σ. By Theorem B
it follows that µ must be Gibbs with respect to f .

In what follows we consider an algebraic variant of shift spaces. Let H be a finite group and consider
a subshift X ⊂ HΓ. We say that X is a group shift if X forms a group under the operation induced
by H operating pointwise on every g ∈ Γ. In [7, Proposition 5.1] it was shown that every group shift
satisfies the topological Markov property (in fact, every algebraic action satisfies the non-symbolic
variant of the topological Markov property, see [5, Proposition 4.1]). Also, it is clear that for any sofic
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approximation sequence Σ we have hΣ(Γ y X) ≥ 0 as X contains a constant configuration, namely
its identity configuration e which satisfies e(g) = 1H for every g ∈ Γ.

Given a group shift, the homoclinic group ∆(X) of X is the set of all y ∈ X such that (y, e) ∈ T (X).
Is is not hard to check (see [7, Proposition 5.2]) that translation-invariant Gibbs measures for f ≡ 0
in X are precisely the translation-invariant Borel probability measures which are invariant under
multiplication by any element of ∆(X). From the arguments above and Theorem 4.9 we obtain that
equilibrium measures on X are invariant under the action of ∆(X). Using Theorem 6.1, we have the
following extension of [7, Corollary 5.4] to groups shifts over sofic groups:

Theorem 6.3. Let Γ be a sofic group and let X ⊂ HΓ be a group shift. Suppose the homoclinic group
∆(X) is dense in X, then the Haar measure on X is the unique measure of maximal entropy with
respect to every sofic approximation sequence Σ.

Proof. Let ν be a Gibbs measure on X. By [7, Proposition 5.2], ν is invariant under multiplication
by any element of ∆(X) which is dense, and thus is invariant under multiplication by any element of
X. It follows that the unique Gibbs measure is the Haar measure. By Theorem 6.1 it follows that
there is a unique measure of maximal entropy with respect to every Σ and it coincides with the Haar
measure.

7 Beyond sofic groups

To the knowledge of the authors, the existence of a non-sofic group is still open. Despite this fact, our
main result suggests that it is reasonable to ask whether there is a meaningful version of the Lanford–
Ruelle theorem that holds beyond sofic groups, perhaps for actions of all countable groups. In this
short final section we point out that a hypothetical consequence of such a generalization would be a
positive answer to Gottschalk’s conjecture stating that every injective, continuous and Γ-equivariant
map on AΓ is surjective. The core of the argument is rather old, and comes from the notion of intrinsic
ergodicity.

To formulate a Lanford–Ruelle theorem for group actions, one needs a reasonable notion of equilib-
rium measure, which implicitly depends on a notion of topological pressure which satisfies a variational
principle. For this theoretical application we need only use the potential 0, and thus we shall rather
speak of topological and measure-theoretic entropy.

Suppose Γ is a topological group and Γ y (X,µ) is a probability measure preserving action. A
measure-theoretic entropy theory for Γ is an assignment

Γ y (X,µ) 7→ h(Γ y X,µ) ∈ [−∞,+∞].

which is invariant under measure-theoretic isomorphism. A topological entropy theory for Γ is an
assignment

Γ y X 7→ h(Γ y X) ∈ [−∞,+∞].

which is invariant under topological isomorphism. Given a measure-theoretic entropy theory, one can
obtain a topological entropy theory by imposing a variational principle as follows:

h(Γ y X) = sup
µ∈ProbΓ(X)

h(Γ y X,µ).

A topological entropy theory which satisfies a variational principle with respect to a measure-
theoretic entropy theory is always monotone with respect to subsystems in the sense that for any
closed (in fact, measurable) Γ-invariant set X0 ⊂ X we have h(Γ y X0) ≤ h(Γ y X).

A Lanford–Ruelle theorem for an entropy theory would state that for every Γ-SFT X ⊂ AΓ (hope-
fully, any subshift with the topological Markov property), any µ ∈ ProbΓ(X) such that h(Γ y X) =
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h(Γ y X,µ) would necessarily be a Gibbs state for f = 0. Then uniqueness of the Gibbs measure
on AΓ for f = 0 would imply that the uniform Bernoulli measure is the unique measure of maximal
entropy for AΓ. As this measure is not supported in any strict subset of AΓ, it follows that any strict
subsystem X0 of X has strictly lower topological entropy. This precludes the possibility of equivari-
antly and continuously embedding AΓ into a proper subsystem, thus settling Gottschalk’s conjecture
for the group Γ.

One available measure-theoretic entropy which works in any group is Rokhlin entropy [39]. The
Rokhlin entropy of a free, ergodic, probability measure preserving action Γ y (X,µ) is given by

hR(Γ y X,µ) := inf
P
Hµ(P),

where P runs over all countable generating partitions of Γ y X, and Hµ(P) is the Shannon entropy
of the partition.

It is obvious from the definitions that hR(Γ y X,µ) is invariant under measure-theoretic iso-
morphism. As a consequence, for any closed (in fact, measurable) Γ-invariant set X0 ⊂ X and any
µ ∈ ProbΓ(X) satisfying µ(X0) = 1 we have hR(Γ y X0, µ|X0

) = hR(Γ y X,µ), since (Γ y X0, µ|X0
)

is measure-theoretically isomorphic to (Γ y X,µ).
In the case Γ is a countable amenable group, Rokhlin entropy coincides with the usual notion for

free ergodic actions. For free actions of sofic groups, Rokhlin entropy dominates the sofic entropy with
respect to any sofic approximation sequence of Γ.

Question 7.1. Does Rokhlin entropy satisfy a Lanford–Ruelle theorem for every group Γ?

It seems the answer to the question above might not be easy because any group which satisfies a
Lanford–Ruelle theorem for Rokhlin entropy must also admit an essentially free ergodic action with
finite nonzero Rokhlin entropy, which is an open question. For a group Γ, one can define hsupR (Γ) as the
supremum over all values of hR on essentially free ergodic actions with finite Rokhlin entropy. It can
be proven (see [40]) that if there is a group Γ for which hsupR (Γ) < +∞ then for every group Γ′ which is
the direct product of Γ with an infinite and locally finite group we have hsupR (Γ′) = 0. This means that
for Γ′ every essentially free ergodic action has Rokhlin entropy zero, thus no Lanford–Ruelle theorem
for Rokhlin entropy can hold on Γ′. On the other hand, having hsupR (Γ) = +∞ for every group Γ
already is enough to settle Gottschalk’s conjecture [40] (see also [10]).
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Teoriya Veroyatnostĕı i ee Primeneniya, 29(2):351–354, 1984.

39



[22] M. Gromov. Endomorphisms of symbolic algebraic varieties. Journal of the European Mathemat-
ical Society, 1(2):109–197, 1999.

[23] G. Keller. Equilibrium States in Ergodic Theory. Cambridge University Press, 1998.

[24] D. Kerr and H. Li. Entropy and the variational principle for actions of sofic groups. Inventiones
mathematicae, 186(3):501–558, 2011.

[25] O. E. Lanford, III and D. W. Robinson. Statistical mechanics of quantum spin systems. III.
Communications in Mathematical Physics, 9:327–338, 1968.

[26] O. E. Lanford, III and D. Ruelle. Observables at infinity and states with short range correlations
in statistical mechanics. Communications in Mathematical Physics, 13:194–215, 1969.

[27] T. Meyerovitch. Gibbs and equilibrium measures for some families of subshifts. Ergodic Theory
and Dynamical Systems, 33(3):934–953, 2013.

[28] T. Meyerovitch. Pseudo-orbit tracing and algebraic actions of countable amenable groups. Ergodic
Theory and Dynamical Systems, pages 1–22, 2018.

[29] M. Misiurewicz. A short proof of the variational principle for a Zn+ action on a compact space. In
International conference on dynamical systems in mathematical physics, number 40 in Astérisque.
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