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Abstract

We establish a connection between percolation on the Cayley graphs of a group and the dy-
namical diversity of cellular automata on that group. Specifically, we demonstrate that Gilman’s
dichotomy between equicontinuity and sensitivity with respect to Bernoulli measures holds on a
finitely generated group if and only if the group has a trivial percolation threshold. Consequently,
we show that a countable group satisfies Gilman’s dichotomy if and only if it is locally virtually
cyclic.
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1 Introduction

Cellular automata (CA) are discrete-time, continuous, shift-equivariant dynamical systems on config-
urations of symbols on a lattice. The study of CA on groups has revealed deep connections between
symbolic dynamics and the algebraic, recursive, and geometric properties of groups (see [5, 6] and the
references therein). In this paper, we identify a new connection between the dynamical properties of
CA on groups and percolation theory.

A central theme in the study of complex systems is the interplay between order and chaos (or
between structure and randomness). In the context of dynamical systems, these are manifested
in the concepts of sensitivity (to initial conditions) and equicontinuity. Sensitivity refers to the
scenario in which small perturbations can lead to significant changes in a system’s evolution. The
study of sensitivity goes back to the works of Lorenz and it is considered to be one of the defining
characteristics of chaos [7, Section 1.8]. Equicontinuity describes the stability of the trajectory of a
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system in response to small perturbations of the system’s initial condition. It generalizes the notion
of Lyapunov stability to arbitrary trajectories of a topological dynamical system.

It has long been observed that, in the context of CA, many dynamical properties have natural
interpretations in terms of the propagation of information in the configurations of the system. For
instance, sensitivity can be characterized in terms of whether local information about the initial condi-
tion can propagate arbitrarily far throughout the system, while equicontinuity means the information
in the initial condition of the CA remains localized.

To understand the typical behaviour of a CA, it is natural to study its evolution with ran-
dom initial conditions. Random initial conditions are typically modeled by a Bernoulli measure on
the configuration space (i.e., a probability measure induced by an i.i.d. process). In this context,
Gilman introduced notions of sensitivity and equicontinuity with respect to a Bernoulli measure µ
(µ-sensitivity and µ-equicontinuity for short). In contrast to the purely topological notions which
consider all perturbations, Gilman’s notions are concerned with sensitivity and stability with respect
to “typical” perturbations. In this context, Gilman proved that, in the one-dimensional case (i.e.,
when the underlying group is Z), every CA falls into one (and only one) of these two categories [13].

Theorem A (Gilman’s dichotomy). Let ϕ : AZ Ñ AZ be a CA and µ a Bernoulli measure on AZ.
Then, ϕ is either µ-equicontinuous or µ-sensitive.

The precise definitions of µ-sensitivity and µ-equicontinuity can be found in Section 3 (Defini-
tions 3.2 and 3.6). Informally, µ-sensitivity means there exists a finite region F in the group G such
that, as the CA evolves, two independent random initial conditions will eventually exhibit distinct
values within F , that is, their distinction almost surely propagates to F . Conversely, µ-equicontinuity
implies that, given a finite region F , two random configurations that agree on a large area around F
will have the same values on F throughout the entire evolution of the CA with high probability. In
other words, information remains localized with high probability.

Let us emphasize that in our current setting, the measure µ is not required to be invariant under
the CA. In fact, according to a general result of Huang, Lu and Ye [19], a similar dichotomy between
µ-equicontinuity and µ-sensitivity holds for all topological dynamical systems as long as µ is invariant
and ergodic under the dynamics.

The geometry of the underlying group G imposes restrictions on how information may propagate,
and consequently, on the dynamics of the CA. For instance, Shereshevsky showed that a CA on Zd
cannot be positively expansive unless d “ 1 [28]. In this paper, we address the following question:

Question 1.1. For which groups does Gilman’s dichotomy hold?

We show that Gilman’s result extends to CA on virtually Z groups and holds for any measure
which is ergodic under the shift action on the configuration space (Theorem 4.3). The main result of
this article is that the validity of Gilman’s dichotomy on a finitely generated group G is tied to the
non-triviality of the percolation threshold on the Cayley graphs of G.

Percolation theory is the study of connectivity in the random subgraphs of an infinite locally
finite graph obtained by deleting vertices (or edges) independently at random. The central question
in this field is whether or not such a random graph will contain an infinite connected component. If
such an infinite connected component exists, we say that the random graph percolates. Percolation
models are among the simplest models in probability theory and statistical physics that exhibit phase
transitions. Let p P r0, 1s denote the probability that each vertex is kept. It can be shown that, as
the parameter p is varied from 0 to 1, a transition occurs from the almost sure absence to the almost
sure presence of percolation. The critical value that witnesses this transition is referred to as the
percolation threshold. It is easy to see that the percolation threshold of the Cayley graph of Z with
any finite generating set is 1. In contrast, every lattice of dimension larger than or equal to 2 has
a non-trivial percolation threshold. Recently, Duminil-Copin, Goswami, Raoufi, Severo, and Yadin
proved that a Cayley graph of a finitely generated group G has a trivial percolation threshold if and
only if the group G is virtually cyclic [10] (Theorem C below).

We now introduce our general counter-example to Gilman’s dichotomy. This example can be
thought of as an additive CA on a percolated environment.

Example 1.2 (Percolated additive CA). Let S be a finite generating set for a group G, and let
A :“ t0, 1u ˆ t0, 1uS . Each configuration in AG can be viewed as a pair of configurations px,wq
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where x P t0, 1uG and w P t0, 1uGˆS . The percolated additive CA is the CA defined by the map
ϕ : AG Ñ AG, where

ϕpx,wqg :“

ˆ

´

ÿ

sPS

wgpsq ¨ xgs

¯

mod 2, wg

˙

, for every g P G.

Here, we view the directed edge pg, gsq as open whenever wgpsq “ 1 and closed otherwise. Thus, the
open edges remain open, and the closed edges remain closed as the CA evolves. The state of each
site (i.e., the value of its first component) is updated to the sum modulo 2 of its neighbors in the
subgraph defined by the open edges. #

It is easy to show that the percolated additive CA cannot be sensitive with respect to any fully
supported measure (Proposition 4.17). We will demonstrate that when G has a non-trivial percolation
threshold, one can choose the generating set S in such a way that the percolated additive CA on G is
not equicontinuous with respect to the uniform Bernoulli measure. Hence, Gilman’s dichotomy fails
on any such group. Using the previously mentioned characterization of the groups with non-trivial
percolation threshold, we conclude the following.

Theorem 1.3. An infinite finitely generated group satisfies Gilman’s dichotomy if and only if it is
virtually Z.

The proof of this theorem appears in Section 4.
In Section 5, we extend this characterization to cover all countable groups. This is done via

reduction to the finitely generated case. We recall that a group G is locally virtually cyclic if every
finitely generated subgroup of G is either finite or contains an isomorphic copy of Z as a finite index
subgroup.

Theorem 1.4. A countable group satisfies Gilman’s dichotomy if and only if it is locally virtually
cyclic.

We remark that the topological (non-stochastic) concepts of sensitivity and equicontinuity have
been thoroughly studied for CA on Z. In this context, Kůrka has established a dichotomy similar
to Gilman’s dichotomy, proving that every CA on Z is either sensitive to initial conditions or has a
residual set of equicontinuity points [21]. In contrast, Sablik and Theyssier have provided an example
of a CA on Z2 that is not sensitive and has no equicontinuity points [27]. It is conjectured that such
CA exist on all countable groups that are not virtually cyclic [3, Conjecture 5.2.25]. This and other
open questions are discussed in Section 6.
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Marseille, Aix-Marseille Université.

2 Preliminaries

We use the notation A Ť B to indicate that A is a finite subset of B.

3



2.1 Graphs and groups

In this paper, a graph refers to a countable directed graph, that is, a pair pV,Eq, where V is a
countable set representing the vertices, and E Ď V ˆV , represents the edges of the graphs. We will
denote the set of the vertices of a graph Γ by V pΓq and the set of its edges by EpΓq. We sometimes
refer to vertices as sites and to edges as bonds.

A finite path in a graph Γ refers to a sequence pv1, v2, . . . , vmq of vertices in V pΓq such that
pvi, vi`1q P EpΓq for each i. An infinite path is defined analogously. A path is said to be self-
avoiding if it does not visit any vertex more than once.

Throughout this paper, G stands for a countable group with identity element e. If G is finitely
generated and we consider a finite set of generators (or generating set) S, we will always implicitly
assume that S is symmetric, that is, closed by inverses. We denote the Cayley graph of G
associated to a finite generating set S by CaypG, Sq. To recall, this is the graph with vertex set G
and edge set

 

pg, gsq : g P G and s P S
(

. The length of an element g P G with respect to S, denoted
by |g|S , refers to the length of the shortest representation of g as a product of elements from S. This
value coincides with the length of the shortest path from e to g in CaypG, Sq. The ball of radius n
around g P G in CaypG, Sq is the set Bnpgq :“ tgh : |h|S ď nu. The centered ball of radius n is
Bn :“ Bnpeq.

Given g P G and B Ď G, we use the notation gB :“ tgh : h P Bu. Similarly, given A,B Ď G, we
define AB :“ tgh : g P A and h P Bu.

Recall that g P G is a torsion element if there exists an integer n ě 1 such that gn “ e. A group
G is called virtually Z if it contains a finite index subgroup which is isomorphic to Z. Equivalently,
G is virtually Z if it contains a non-torsion element h P G such that xhy :“ thk : k P Zu is a finite
index subgroup of G.

A group G is called virtually cyclic if it contains a cyclic subgroup of finite index, that is, if G
is either finite or virtually Z. A locally virtually cyclic group is a group whose finitely generated
subgroups are all virtually cyclic.

For further background on the geometric aspects of countable groups, we refer to the monograph
by Meier [24].

2.2 Cellular automata

Let G be a countable set, and A be a finite set with |A| ě 2, which we call an alphabet. A map
x : G Ñ A is referred to as a configuration (on G). For a configuration x P AG and an element
g P G, we use the notations xg and xpgq interchangeably, and interpret it as the symbol at position g.
The restriction of a configuration x P AG to a set F Ď G will be denoted by xF . A map w : F Ñ A
with F Ť G is called a (finite) pattern. Every pattern w : F Ñ A defines a set

rws :“ tx P AG : xF “ wu ,

which is called a cylinder.
The set AG of all configurations is endowed with the product topology inherited from the discrete

topology on A. We also equip AG with the Borel σ-algebra which, in the current setting, coincides
with the product σ-algebra when A is given the discrete σ-algebra. The cylinders form a basis for
the topology on AG. Furthermore, every probability measure on AG is uniquely determined by the
probabilities it assigns to the cylinders.

We are mostly interested in the case when G is a group, in which case there is a natural left action
by translations. As before, let G be a countable group. The shift action of G on AG is given by the
map pg, xq ÞÑ gx, where pgxqh :“ xg´1h. A map ϕ : AG Ñ AG is G-equivariant if ϕpgxq “ gϕpxq for
all g P G and x P AG.

Definition 2.1. A cellular automaton (CA) is a map ϕ : AG Ñ AG that is continuous and G-
equivariant.

We are interested in the dynamical system obtained by iterating ϕ on an initial configuration.
The following theorem, due to Curtis, Hedlund and Lyndon [18], provides an equivalent definition

for CA.
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Theorem B (Local description of CA). A map ϕ : AG Ñ AG is a CA if and only if there exists a
set K Ť G and a function f : AK Ñ A such that

ϕpxqg “ f
`

pg´1xqK
˘

for all x P AG and all g P G.

Thus the symbol ϕpxqg is uniquely determined by the finite pattern xgK .
For more on the topological dynamics of one-dimensional CA see the monograph by Kůrka [22].

For the group-theoretic aspects of CA, see the monograph by Ceccherini-Silberstein and Coornaert [5].
This paper concerns CA with random initial conditions. Random initial conditions will be pre-

scribed by probability measures on AG. A probability measure µ on AG is said to be G-invariant if
µpg´1Eq “ µpEq for every measurable set E Ď AG and every g P G. A measurable set E Ď G is said
to be G-invariant if g´1E “ E for each g P G. A G-invariant measure µ is G-ergodic if for every
G-invariant measurable set E Ď G, we either have µpEq “ 0 or µpEq “ 1. Bernoulli measures on AG

are examples of G-ergodic measures.

2.3 Percolation

Let A be a finite set, p : AÑ r0, 1s be a probability distribution and G a countable set. The Bernoulli
measure with marginal p is the probability measure µp on AG given by

µpprwsq “
ź

gPF

ppwgq

for every pattern w : F Ñ A with F Ť G.
Let Γ be a graph and x P t0, 1uV pΓq. A vertex v P V pΓq with xpvq “ 1 is interpreted as being

open in x; otherwise, it is considered closed. A path in Γ is said to be open in x if all its vertices
are open. We say that x percolates in Γ if there exists an infinite open self-avoiding path in x. A
probability measure µ on t0, 1uV pΓq is said to percolate in Γ if

µ
´

 

x P t0, 1uV pΓq : x percolates in Γ
(

¯

ą 0 .

For p P r0, 1s, let us consider the Bernoulli measure µp with parameter p on t0, 1uG (i.e., the
Bernoulli measure with marginal 0 ÞÑ 1 ´ p, 1 ÞÑ p). By the Kolmogorov zero-one law, for each p,
the probability of percolation with respect to µp is either 0 or 1. The percolation threshold of Γ
is defined as

pcpΓq :“ sup
 

p P r0, 1s : µp does not percolate in Γ
(

.

A standard monotonicity argument shows that for every p ą pcpΓq, the measure µp percolates in Γ.
We say that Γ has non-trivial percolation threshold if pcpΓq ă 1.

The notions of percolation for configurations of open and closed edges and for measures on such
configurations are defined analogously. To distinguish between them, these two types of percolation
are often referred to as site and bond percolation. A graph with bounded degrees has a non-trivial
site percolation threshold if and only if it has a non-trivial bond percolation threshold (see [23,
Propositions 7.10 and 7.11]). In this paper, we are primarily concerned with site percolation.

It is well-known that, for a finitely generated group G, the non-triviality of percolation threshold
on the Cayley graphs of G does not depend on the choice of the generators (see for instance [23,
Theorem 7.15]). Namely, if S and T are two finite generating sets for G, then pcpCaypG, Sqq ă 1
if and only if pcpCaypG, T qq ă 1. Thus, we say that G has non-trivial percolation threshold if
pcpCaypG, Sqq ă 1 for some (equivalently, for every) choice of the generating set S.

Every virtually Z group is two-ended (see e.g., [24, Corollary 11.34]) and hence is easily seen
to have trivial percolation threshold. On the other hand, following several partial results by various
authors (see the references in [23, Section 7.4] and [10]), Duminil-Copin, Goswami, Raoufi, Severo, and
Yadin recently proved that every group of super-linear growth (i.e., every group that is not virtually
cyclic) has non-trivial percolation threshold [10], thus establishing the following characterization.

Theorem C (Characterization of groups with non-trivial percolation). A finitely generated group
has a trivial percolation threshold if and only if it is virtually cyclic.

For more on percolation theory, see the monographs by Grimmett [15] and Lyons and Peres [23],
and the recent survey by Duminil-Copin [9].
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3 Sensitivity and equicontinuity

In this section, we introduce the notions of sensitivity and equicontinuity with respect to a measure
in the setting of CA on groups.

Given a CA ϕ : AG Ñ AG, we define the stability set of a configuration x P AG with respect to
a set F Ť G as

Cpx, F, ϕq :“ ty P AG : ϕnpyqF “ ϕnpxqF for all n ě 0u .

This is the set of all configurations whose orbits under ϕ agree with the orbit of x inside the region F .
Let us observe that:

Observation 3.1. We have that y P Cpx, F, ϕq if and only if Cpy, F, ϕq “ Cpx, F, ϕq.

Therefore, ignoring the repetitions, the sets Cpx, F, ϕq partition AG.

3.1 Sensitivity

A CA ϕ : AG Ñ AG is said to be sensitive if there exists a set F Ť G such that, for every configuration
x P AG and every set E Ť G, there exists a configuration y P AG and a time t ě 0 such that yE “ xE
but ϕtpyqF ‰ ϕtpxqF . It is not hard to check that ϕ is sensitive if and only if there exists an F Ť G
such that Cpx, F, ϕq has empty interior for every x P AG.

Gilman introduced the following measurable version of sensitivity, which he called “almost expan-
sivity” [13].

Definition 3.2 (Sensitivity w.r.t. a probability measure). Let ϕ : AG Ñ AG be a CA and µ a
probability measure on AG. We say that ϕ is sensitive with respect to µ (µ-sensitive for short)
if there exists a finite set F Ť G such that µ

`

Cpx, F, ϕq
˘

“ 0 for µ-almost every x P AG.

In analysis and dynamical systems theory, analogies between topological and measurable concepts
are often insightful, enabling the translation of results from one framework to the other and the
formulation of reasonable conjectures. For a survey of such interactions, see the monograph by
Oxtoby [25] and the article by Glasner and Weiss [14].

Remark 3.3. The “almost sure” quantifier in the definition of µ-sensitivity can be replaced with
a “sure” quantifier; that is, a CA ϕ : AG Ñ AG is µ-sensitive if and only if there exists an F Ť G
such that µ

`

Cpx, F, ϕq
˘

“ 0 for every x P AG. Indeed, from Observation 3.1 it follows that if

µ
`

Cpx, F, ϕq
˘

ą 0 for some x, then µ
`

Cpy, F, ϕq
˘

ą 0 for every y P Cpx, F, ϕq, hence ϕ is not
µ-sensitive. 3

Any CA that is sensitive with respect to a fully supported measure is also sensitive. The converse
does not hold. Gilman [13, Section 3] described an example that is sensitive and not µ-sensitive for
some, but not all, Bernoulli measures µ. Here, we present a more extreme example, a sensitive CA
that is not µ-sensitive for any Bernoulli measure µ.

Example 3.4 (Sensitive but not µ-sensitive). Consider the CA ϕp : t0, 1uZ Ñ t0, 1uZ, where

ϕppxqn :“

#

1 if xn`1 “ xn`2 “ 1,

0 otherwise,

for every x P t0, 1uZ and n P Z. We call this the pine processionary CA in analogy with the
behaviour of the pine processionary caterpillars. In this model, the symbol 1 represents a caterpillar.
The caterpillars form connected chains or “processions” that move to the left. At each time step, the
last caterpillar in the chain (the rightmost one) detaches and disappears, as if it has become lost. An
illustration of a space-time diagram of this CA is shown in Figure 1.

We first note that ϕp is sensitive. Indeed, given x P t0, 1uZ and n P N, we can construct two
configurations y, z P t0, 1uZ, where

yk :“

#

xk if ´n ď k ď n,

0 otherwise,
zk :“

#

xk if ´n ď k ď n,

1 otherwise.
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Figure 1: A section of the space-time diagram of the pine processionary CA with time going upwards.
The symbol 1 has been replaced by a cute caterpillar and 0 by an empty space.

It is clear that ϕn`1
p pyq0 “ 0 and ϕn`1

p pzq0 “ 1. Hence, either ϕn`1
p pyq0 ‰ ϕn`1

p pxq0 or ϕn`1
p pzq0 ‰

ϕn`1
p pxq0. Therefore, ϕp is sensitive with F :“ t0u as witness.

Let 0 ď q ď 1 and consider the Bernoulli measure µq with parameter q on t0, 1uZ. Let us show
that ϕp is not sensitive with respect to µq. Clearly, ϕp is not µ1-sensitive. Thus, assume q ă 1. For
n P N and i P Z, we define

Ein :“ tx P t0, 1uZ : ϕnp pxqi “ 1u

“
 

x P t0, 1uZ : xj “ 1 for all j P ti` n, . . . , i` 2nu
(

.

Clearly µqpE
i
nq “ qn and hence

8
ÿ

n“1

µqpE
i
nq ă 8 .

Using the Borel-Cantelli lemma, it follows that the measure of the set of configurations that are in
infinitely many Ein’s is zero. In other words, for almost every x P t0, 1uZ, there exists an m P N such
that ϕnp pxqi “ 0 for all n ě m.

Now, let F Ť G. For m P N, we define

ZFm :“
 

x P t0, 1uZ : ϕnp pxqi “ 0 for all i P F and n ě m
(

.

From the above observation, it follows that µqpZ
F
mq ą 0 for some m P N. Since there are only finitely

many possibilities for the values xF , ϕppxqF , . . . , ϕ
m´1
p pxqF , it follows that for some w

p0q
F , w

p1q
F , . . . ,

w
pm´1q
F P t0, 1uF , the set

DF
m :“ DF

mpw
p0q
F , w

p1q
F , . . . , w

pm´1q
F q :“

 

x P ZFm : ϕnp pxqF “ w
pnq
F for 0 ď n ď m´ 1

(

has positive measure. For every x P DF
m, we have Cpx, F, ϕpq Ě DF

m, hence µq
`

Cpx, F, ϕpq
˘

ą 0.
Therefore, ϕp is not µq-sensitive. #

3.2 Equicontinuity

An equicontinuity point of a CA ϕ : AG Ñ AG is a configuration x P AG such that, for every
F Ť G, there exists E Ť G such that every y P AG with yE “ xE satisfies ϕtpyqF “ ϕtpxqF for all
t ě 0. The latter condition is equivalent to the equicontinuity of the family pϕnqnPN at x in the sense
of analysis, hence the name.

We say that a CA ϕ is almost equicontinuous if its equicontinuity points form a residual subset
(i.e. it contains a countable intersection of dense open subsets) of AG.

Proposition 3.5 (Characterization of almost equicontinuity). A CA ϕ : AG Ñ AG is almost equicon-
tinuous if and only if the set of configurations x P AG for which Cpx, F, ϕq has non-empty interior
for every F Ť G is residual.
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Proof. First, observe that a configuration x P AG is an equicontinuity point of ϕ if and only if for
every F Ť G, the set Cpx, F, ϕq has x in its interior.

Let F Ť G be fixed. Recall from Observation 3.1 that the family C :“ tCpx, F, ϕq : x P AGu
partitions AG. Let D :“ tD P C : 8D ‰ ∅u, where 8D denotes the interior of D. Note that every
element of C is closed. Let

EF :“ tx P AG : 8Cpx, F, ϕq Q xu “
ď

DPD

8D ,

E1F :“ tx P AG : 8Cpx, F, ϕq ‰ ∅u “
ď

DPD

D “ EF Y
ď

DPD

BD ,

where BD denotes the boundary of D. A topological space that has a countable basis can have at
most countably many disjoint open sets, hence D is at most countable. Since the boundary of every
closed set is nowhere dense, it follows that

Ť

DPD BD is a meagre set. Therefore, EF is residual if and
only if E1F is. Intersecting over all F Ť G, we obtain that ϕ is almost equicontinuous if and only if
Ş

FŤGE
1
F is residual. This proves the claim.

Gilman proposed a measurable analogue of almost equicontinuity for CA on Z in terms of density
points [13]. We present an alternative definition, that naturally aligns with Proposition 3.5, and we
demonstrate its equivalence to Gilman’s definition.

Definition 3.6 (Equicontinuity w.r.t. a probability measure). Let ϕ : AG Ñ AG be a CA and
µ a probability measure on AG. We say that ϕ is equicontinuous with respect to µ (µ-
equicontinuous for short) if for µ-almost every x P AG, we have µpCpx, F, ϕqq ą 0 for every F Ť G.

Remark 3.7. Since the family of finite subsets of G is countable, the order of quantifiers in the
definition of µ-equicontinuity can be reversed; that is, a cellular automaton ϕ : AG Ñ AG is µ-
equicontinuous if and only if, for every finite set F Ť G, we have µpCpx, F, ϕqq ą 0 for µ-almost
every x P AG. 3

A chain J1 Ď J2 Ď ¨ ¨ ¨ of finite subsets of G is said to be co-final if
Ť8

n“1 Jn “ G. For instance,
the balls Bnpeq in the Cayley graph of a finitely generated group G form a co-final chain. Let µ be a
probability measure on AG, E Ď AG a measurable set, and pJnqnPN a co-final chain of finite subsets
of G. We say that a configuration x P AG is a point of µ-density of E with respect to pJnqnPN
if x is in the topological support of µ and

lim
nÑ8

µ
`

E
ˇ

ˇ rxJns
˘

“ lim
nÑ8

µpE X rxJnsq

µprxJnsq
“ 1 .

The following theorem is the analogue of Lebesgue’s density theorem for the Cantor set. It follows
directly from Levy’s zero-one law [11, Theorem 5.5.8].

Theorem D (Points of density). Let pJnqnPN be a co-final chain of finite subsets of G. Let µ be a
probability measure on AG and E Ď AG a measurable set. Then, µ-almost every configuration in E
is a point of µ-density of E with respect to pJnqnPN.

The following proposition shows that µ-equicontinuity can be equivalently defined in terms of
density points with respect to a co-final chain pJnqnPN.

Proposition 3.8 (Characterization of µ-equicontinuity). Let pJnqnPN be a co-final chain of finite sub-
sets of G. Let ϕ : AG Ñ AG be a CA and µ a probability measure on AG. Then, ϕ is µ-equicontinuous
if and only if for µ-almost every x P AG and every F Ť G, we have

lim
nÑ8

µ
`

Cpx, F, ϕq
ˇ

ˇ rxJns
˘

“ 1 ,

that is, x is a point of µ-density of Cpx, F, ϕq with respect to pJnqnPN.

Proof. Suppose that for µ-almost every x P AG and every F Ť G, we have µ
`

Cpx, F, ϕq
˘

ą 0. Let
F Ť G be fixed. Recall from Observation 3.1 that the family C :“ tCpx, F, ϕq : x P AGu partitions AG.
Let D :“ tD P C : µpDq ą 0u. A probability space can have at most countably many disjoint sets of
positive measure, hence D is at most countable. For D P D , let

rD :“
 

x P D : x is a point of µ-density of Cpx, F, ϕq “ D with respect to pJnqnPN
(

.
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By Theorem D, µp rDq “ µpDq for each D. Therefore,

µ
´

ď

DPD

rD
¯

“
ÿ

DPD

µp rDq “
ÿ

DPD

µpDq “ µ
´

ď

DPD

D
¯

“ 1 .

In other words, the setMF of configurations x P AG such that x is a point of µ-density of Cpx, F, ϕq has
µ-measure 1. Since the family of finite subsets of G is countable, we conclude that µ

`
Ş

FŤGMF

˘

“ 1,
proving the forward implication.

The converse follows from the fact that, by definition, a null set cannot have a point of density.

One can also characterize µ-equicontinuity using a condition obtained from Lusin’s characteriza-
tion of Borel functions [12].

The following example shows that a CA that is equicontinuous with respect to a Bernoulli measure
need not be almost equicontinuous.

Example 3.9 (µ-equicontinuous but not almost equicontinuous). Consider the pine processionary
CA ϕp of Example 3.4 and a Bernoulli measure µq. The argument used to show the sensitivity of ϕp

also shows that ϕp has no equicontinuity points. On the other hand, since ϕp is not µq-sensitive, by
Gilman’s theorem (Theorem A), it has to be µq-equicontinuous. #

4 Gilman’s dichotomy

From the definitions, it is clear that a CA cannot be both sensitive and equicontinuous with respect
to a measure µ. Inspired by Gilman’s result (Theorem A), we introduce the following terminology.

Definition 4.1. We say that a group G satisfies Gilman’s dichotomy if for every finite set A and
every Bernoulli measure µ on AG, every CA ϕ : AG Ñ AG is either µ-sensitive or µ-equicontinuous.

As mentioned in the introduction, the objective of this paper is to characterize which groups
satisfy Gilman’s dichotomy.

4.1 Generalization of Gilman’s dichotomy to virtually Z groups

We begin by extending Gilman’s result to virtually Z groups. In fact, we will show that, on such
groups, Gilman’s dichotomy holds not only for Bernoulli measures, but for all G-ergodic measures.
Our proof relies on the well-known Freudenthal-Hopf characterization of virtually Z groups as those
that have two ends (see for instance [24, Corollary 11.34]). This means that for every generating set
S of G, if we remove a sufficiently large ball from CaypG, Sq, the resulting graph contains exactly two
infinite connected components.

Lemma 4.2. Let G be a virtually Z group and K Ť G. Let h P G be a non-torsion element of G and
let W Ť G be a finite set such that xhyW “ G.

There exists a set F0 Ť G such that for every F Ť G, there exist n0 P N such that for all n,m ą n0

and u, v PW , the set Gzph´nuF0 Y h
mvF0q can be partitioned into two sets Gin and Gex such that

(i) Gin is finite,

(ii) GinK XGex “ ∅, and

(iii) Gex X F “ ∅.

Proof. Fix a finite set S of generators for G such that K Ď S. As usual, let Bn :“ Bnpeq be the
centered ball of radius n in CaypG, Sq. Let r ě 1 be such that W Ď Br and such that after removing
all vertices in Br the graph CaypG, Sq has two infinite connected components G` and Gr.

Notice that there exists some t0 such that for every t ě t0, then h´tBr and htBr are contained in
the two distinct infinite connected components. Up to renaming the sets, we have h´tBr Ď G` and
htBr Ď Gr.

We define F0 “
Ť

wPW w´1Br. Now fix F Ť G. As W Ď Br, there exists κ0 P Z such that

F Ď
κ0
ď

i“´κ0

h´iBr .
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Now let n0 :“ t0 ` κ0, and consider n,m ą n0 and u, v P W . By the construction of F0, we
have h´nBr Ď h´nuF0 and hmBr Ď hmvF0. In particular, Gzh´nuF0 has two infinite connected
components, which we call G´n` and G´nr , and they satisfy

G´n` Ď h´nG` and G´nr Ď h´nGr .

Similarly, GzhmvBr has two infinite connected components Gm` and Gmr , and they satisfy

Gm` Ď hmG` and Gmr Ď hmGr .

We take Gex :“ pG´n` XGm` qYpG´nr XGmr q and notice that its complement in G is a finite set. Finally,
set Gin such that Gin, Gex and ph´nuF0 Y h

mvF0q partition G.
Now, property (i) is direct from the definition of Gin. Property (ii) follows from the requirement

that K Ď S. Finally, as n,m ě n0, we have

hiBr Ď h´nGr and hiBr Ď hmG`

for every i P t´κ0, . . . , κ0u. In particular, this implies that

hiBr XG´n` Ď hiBr X h
´nG` “ ∅ and hiBr XGmr Ď hiBr X h

mGr “ ∅ ,

from which we obtain (iii).

The second ingredient of our proof is the Poincaré recurrence theorem for a single measure-
preserving transformation [30, Theorem 1.4]. (For other versions regarding group actions, see [20,
Theorem 2.10]). We give a short proof for the sake of completeness.

Theorem E (Poincaré recurrence theorem). Let ψ : X Ñ X be a measurable map on a measurable
space X and let µ be a ψ-invariant probability measure on X. For every measurable set E Ď X, we
have µpE1q “ µpEq, where

E1 “
 

x P E : ψnpxq P E for infinitely many n ą 0
(

.

Proof. Let T Ť N and AT :“ tx P X : for each n ě 0, n P T if and only if ψnpxq P Eu. Note that the
sets ψ´mpAT q (for m ě 0) are disjoint. Since µ is ψ-invariant, we have

1 ě µ

˜

ď

mě0

ψ´mpAT q

¸

“
ÿ

mě0

µ
`

ψ´mpAT q
˘

“
ÿ

mě0

µpAT q ,

thus µpAT q “ 0. As EzE1 Ď
Ť

TŤNAT , it follows that µpE1q “ µpEq.

Theorem 4.3 (Generalization of Gilman’s dichotomy). Let G be a virtually Z group, µ a G-ergodic
measure on AG and ϕ : AG Ñ AG a CA. Then, ϕ is either µ-sensitive or µ-equicontinuous. In
particular, every virtually Z group satisfies Gilman’s dichotomy.

Proof. By Theorem B, there exists a set K Ť G and local map f : AK Ñ A such that ϕpxqg “
f
`

pg´1xqK
˘

for every g P G. Let h P G be a non-torsion element of G such that xhy is a normal
finite index subgroup of G, and let W Ť G be such that xhyW “ G and e PW . Let F0 Ť G be as in
Lemma 4.2.

Suppose that ϕ is not µ-sensitive. By definition, there exists a configuration z P AG such that
µ
`

Cpz, F0, ϕq
˘

ą 0. We claim that, µ
`

Cpx, F, ϕq
˘

ą 0 for every F Ť G and µ-almost every x P AG,
which means ϕ is µ-equicontinuous.

Let pJnqnPN be an arbitrary co-final chain of finite subsets of G. Clearly, for each g, the sequence
pgJnqnPN is also co-final in G. Let D :“

Ş

gPGDg, where

Dg :“ tx P Cpz, F0, ϕq : x is a point of density of Cpz, F0, ϕq with respect to pgJnqnPNu .

By Theorem D, we have µpDgq “ µ
`

Cpz, F0, ϕq
˘

for each g P G. Hence, µpDq “ µ
`

Cpz, F0, ϕq
˘

ą 0.
We say that a set T Ď Z is bi-infinite if T ‰ ∅ and for every n P T , there exist `, r P T such

that ` ă n ă r. Let

Y :“
 

x P supppµq : tn P Z : hnx PWDu is bi-infinite
(
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be the set of all configurations in the topological support of µ whose orbits under h visit WD infinitely
many times in both directions. Let us show that µpY q “ 1. Since W Q e, we have Y Ě D` X D´,
where

D` :“ tx P D : h´nx P D for infinitely many n ą 0u Ď D ,

D´ :“ tx P D : hmx P D for infinitely many m ą 0u Ď D .

Applying Poincaré’s recurrence theorem (Theorem E) to translations by h and h´1, we obtain that
µpD`q “ µpD´q “ µpDq, hence µpY q ě µpD` XD´q “ µpDq. Let us verify that Y is G-invariant.
The G-ergodicity of µ would then imply that µpY q “ 1. Let g P G. By the normality of xhy, there
exists an integer k ‰ 0 such that hg “ ghk. Furthermore, since xhyW “ G, for every w P W , there
exists a w1 P W and an integer ipwq such that g´1w “ hipwqw1. Set I :“ tipwq : w P W u. Now,
let x P g´1Y . We have gx P Y , which means the set tn P Z : hngx P WDu is bi-infinite. But
hngx P WD implies that h´i`knx P WD for some i P I. Since I is finite and k ‰ 0, it follows that
the set tm P Z : hmx P WDu is also bi-infinite, which means x P Y . Therefore, g´1Y Ď Y for every
g P G, and hence Y is G-invariant.

Now, let F Ť G and x P Y . We prove that µ
`

Cpx, F, ϕq
˘

ą 0. By the choice of F0, there exists
an n0 P N (corresponding to F , as in Lemma 4.2) such that for all n,m ą n0 and u, v P W , the
set Gzph´nuF0 Y hmvF0q can be partitioned into two sets Gin and Gex such that (i) Gin is finite,
(ii) GinK XGex “ ∅, and (iii) Gex XF “ ∅. Since x P Y , there exist n,m ą n0 and u, v PW be such
that u´1hnx, v´1h´mx P D. Let Gin and Gex be as above.

Since u´1hnx is a point of density of Cpz, F0, ϕq with respect to pu´1hnJnqnPN, the configuration x
is a point of density of A´ :“ h´nuCpz, F0, ϕq “ Cph´nuz, h´nuF0, ϕq with respect to pJnqnPN.
Likewise, x is a point of density of A` :“ hmvCpz, F0, ϕq “ Cphmvz, hmvF0, ϕq with respect to
pJnqnPN. Pick t P N large enough such that

� Gin Ď Jt,

� µ
`

rxJts XA
´
˘

ą 1
2µ

`

rxJts
˘

, and

� µ
`

rxJts XA
`
˘

ą 1
2µ

`

rxJts
˘

.

Note that the latter two conditions, along with the fact that x is in the topological support of µ,
imply that µ

`

rxJts XA
´ XA`

˘

ą 0.
We claim that

rxJts XA
´ XA` Ď Cpx,GzGex, ϕq Ď Cpx, F, ϕq; (1)

from which it follows that µ
`

Cpx, F, ϕq
˘

ě µ
`

rxJts XA
´ XA`

˘

ą 0.
The second inclusion in (1) follows trivially from fact that F X Gex “ ∅. To prove the first

inclusion, let y P rxJts X A´ X A`, and suppose on the contrary that y R Cpx,GzGex, ϕq. Let n ě 0
be the smallest integer such that ϕnpyqg ‰ ϕnpxqg for some g P GzGex “ Gin Y h´nuF0 Y hmvF0.
First, note that g cannot belong to h´nuF0 because x, y P A´ “ Cph´nuz, h´nuF0, ϕq. Similarly,
g cannot belong to hmvF0. Thus, we must have g P Gin. The minimality of n and the fact that
gK XGex Ď GinK XGex “ ∅ imply that ϕn´1pxqgK “ ϕn´1pxqgK . But this gives

ϕnpyqg “ f
´

`

g´1ϕn´1pyq
˘

K

¯

“ f
´

`

g´1ϕn´1pxq
˘

K

¯

“ ϕnpxqg ,

which contradicts the assumption. Thus the second inclusion in (1) also holds.
We have shown that µ

`

Cpx, F, ϕq
˘

ą 0 for every F Ť G and every x P Y , where Y is a measurable
set with µpY q “ 1, which means ϕ is µ-equicontinuous. This concludes the proof of the theorem.

4.2 Percolated additive CA

We show that unless a finitely generated group G has a trivial percolation threshold, the percolated
additive CA, with a suitable choice of the set of generators, is neither equicontinuous nor sensitive
with respect to the uniform Bernoulli measure. Combined with Theorem 4.3 and Theorem C, this
proves Theorem 1.3.
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We recall from the introduction the definition of the percolated additive CA. Let S Ť G be a
generating set for G, and A :“ t0, 1uˆ t0, 1uS . The percolated additive CA on G associated to S
is the CA defined by the map ϕ : AG Ñ AG, where

ϕpx,wqg :“

ˆ

´

ÿ

sPS

wgpsq ¨ xgs

¯

mod 2, wg

˙

, for every g P G.

Observation 4.4. A percolated additive CA is linear in the first component, in the sense that

ϕpx` y, wq “ ϕpx,wq ` ϕpy, wq

for every w P t0, 1uSˆG and x, y P t0, 1uG.

Given w P t0, 1uGˆS , we let ϕwpxq denote the first component of ϕpx,wq. Thus, by definition,
ϕpx,wq “ pϕwpxq, wq, and more generally ϕnpx,wq “ pϕnwpxq, wq for n ě 0.

Notation 4.5. Let G be a group generated by S Ť G. We let µp and rµp denote the Bernoulli
measures, with parameter p P p0, 1q, on t0, 1uG and t0, 1uSˆG respectively. In particular, identifying
AG with t0, 1uG ˆ t0, 1uSˆG as before, µ1{2 ˆ rµ1{2 stands for the uniform Bernoulli measure on AG.

The fact that ϕ is not pµ1{2ˆ rµ1{2q-sensitive is easy to show (Proposition 4.17). To prove that ϕ is
not pµ1{2ˆ rµ1{2q-equicontinuous, we use a percolation argument. We will also use the following simple
lemma.

Lemma 4.6. Let n ě 1 and let Z1, Z2, . . . , Zn be i.i.d. Bernoulli random variables with parameter 1{2.
Then, Y :“ pZ1 ` Z2 ` ¨ ¨ ¨ ` Znq mod 2 is also a Bernoulli random variable with parameter 1{2.

4.3 Connection with percolation

In this subsection G denotes a finitely generated group. We show how the propagation of information
in the percolated additive CA associated to a set of generators S is linked to site percolation on
CaypG, Sq. To this end, we introduce two processes, one tracking the dependencies over time in
the CA when the environment is random and the other exploring the cluster of the origin in site
percolation.

Let ϕ be the percolated additive CA on G associated to S. Since ϕ is additive on its first coordinate
(Observation 4.4), so is ϕn for every n ě 0. Hence, for every w P t0, 1uGˆS and n ě 0, there exists a
set Mnpwq Ť G such that

ϕnwpxqe “
´

ÿ

gPMnpwq

xg

¯

mod 2 (2)

for every x P t0, 1uG. Notice that if for g P G we let δg P t0, 1u
G be the configuration with value 1

on g and 0 everywhere else, then

Mnpwq “
 

g P G : ϕnwpδgqe “ 1
(

Observation 4.7. We have

M0pwq “ teu ,

Mnpwq “
 

g P G :
∣∣ts P S : gs´1 PMn´1pwq and wgs´1psq “ 1u

∣∣ is odd
(

for n ě 1.

In other words, Mnpwq consists of all sites to which w has an odd number of open bonds from
Mn´1pwq.

A probability measure ν on t0, 1uGˆS turns pMnqně0 into a stochastic process which we call
the dependence process of ϕ. Let Mďnpwq :“

Ťn
i“0Mipwq. We say that the process pMnqně0

terminates on w if Mďn`1pwq “ Mďnpwq for some n ě 0. Otherwise, we say that the process
survives.

Remark 4.8. The condition Mďn`1pwq “Mďnpwq does not imply Mďn`k “Mďnpwq for all k ě 0.
However, the above strong notion of survival will be sufficient for our purpose. 3
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The following follows easily from Observation 4.7 using induction.

Observation 4.9. For n ě 1, the set Mnpwq is uniquely determined by the restriction of w to
Mďn´1pwq.

Next, we define a similar process based on site percolation. Given x P t0, 1uG and n ě 0, we let
M 1
npxq denote the set of all sites g P G to which x has an open path of length n from e to g. We do

not require e to be open in such a path. We let M 1
ďnpxq :“

Ťn
i“0M

1
ipxq.

Observation 4.10. We have

M 1
0pxq “ teu ,

M 1
npxq “

 

g P G : xg “ 1 and g “ fs for some f PM 1
n´1pxq and s P S

(

for n ě 1.

In other words, M 1
npxq consists all open sites of x to which there is a bond from M 1

n´1pxq.

A probability measure µ on t0, 1uG turns pM 1
nqně0 into a stochastic process which we call the

(percolation) cluster exploration process. As before, we say that the process pM 1
nqně0 termi-

nates or survives on x depending on whether M 1
n`1pxq “M 1

npxq for some n ě 0 or not. Clearly, if
µ percolates, then pM 1

nqně0 survives.
We are now ready to state the connection between the percolated additive CA and site percolation.

Proposition 4.11. If the cluster exploration process pM 1
nqně0 (with measure µ1{2) has positive prob-

ability of survival, then so does the dependence process pMnqně0 (with measure rµ1{2).

Proof. It suffices to construct a coupling of µ1{2 and rµ1{2 with the property that M 1
ďn “Mďn almost

surely for every n ě 0. We shall do this by recursively sampling w from rµ1{2 and x from µ1{2 in such
a way that M 1

ďnpxq “ Mďnpwq for all n ě 0. As before, we think of the sites g with xg “ 1 as
open sites and the bonds pg, gsq with wgpsq “ 1 as open bonds. The non-open sites and bonds are
considered closed.

We start by sampling the status of the site at the origin. By definition, M 1
0 “M0 “ teu irrespective

of the values of w and x. Let A0 :“ teu. Next, we sample the status of all the bonds exiting e. We
declare each site s P Szteu to be open if and only if the bond pe, sq is open; otherwise, we declare s
to be closed. Clearly, M1zteu “M 1

1zteu “ ts : pe, sq is openu, hence Mď1 “M 1
ď1. Let A1 :“ A0 Y S.

Let n ě 2. Suppose that by the end of the pn ´ 1qst step, we have ensured that M 1
ďk “ Mďk

for k “ 0, 1, . . . , n ´ 1 and in the process we have sampled the status of all the sites and bonds
in the subgraph induced by An´1 :“ A0 YMďn´2S. At the nth step, we first sample the status
of all the bonds from Mn´1 to GzAn´1 (equivalently, from Mďn´1 to GzAn´1). We then declare
a site h P Mn´1SzAn´1 as open if the number of open bonds from Mn´1 to h is odd; otherwise,
h is declared as closed. By Lemma 4.6, each such site will be open with the correct probability
of 1{2. It follows directly from the definitions that M 1

nzM
1
ďn´1 “ MnzMďn´1, hence M 1

ďn “ Mďn.
Furthermore, it is clear that by the end of this step, we have sampled the status of all the sites and
bonds in An :“ A0 YMďn´1S.

The sites and bonds whose status are not sampled at any step are irrelevant to the two processes
pMnqně0 and pM 1

nqně0. We can sample their status independently of one another. The claimed
property of the constructed coupling now follows by induction.

4.4 Lowering the percolation threshold

This section is devoted to proving the following result on the percolation threshold of finitely generated
groups.

Proposition 4.12 (Percolation with low threshold). Let G be a finitely generated group with a non-
trivial percolation threshold. For every α P p0, 1q there exists a set of generators S Ť G such that
pcpCaypG, Sqq ă α.

In other words, in every group where the percolation threshold is non-trivial, we have

inf
SŤG

pc
`

CaypG, Sq
˘

“ 0 .
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We remark that the corresponding statement regarding the opposite end was recently proven false
by Panagiotis and Severo [26]. Namely, they showed that there is a universal gap ε0 ą 0 such that
every Cayley graph Γ with non-trivial percolation threshold satisfies pcpΓq ď 1´ ε0.

Let us note that in the case where G “ Zd, the conclusion of Proposition 4.12 can be proven
easily by partitioning Zd into hypercubic blocks of equal size and using the fact that these blocks
form a lattice that is again isomorphic to Zd. Unfortunately, this argument does not seem to extend
to arbitrary finitely generated groups. We prove the proposition by considering the cases in which G
is nonamenable (Proposition 4.14) and amenable (Proposition 4.16) separately.

Let G be a group and let K Ť G and δ ą 0. A set F Ť G is said to be pK, δq-invariant, if

|FKzF | ď δ|F | .

Given F,K Ť G, we let intKpF q :“ tt P F : tK Ď F u and BKpF q :“ F z intKpF q. A double counting
argument shows that if F is a pK, δ{|K|q-invariant set, then

∣∣BKpF q∣∣ ă δ|F | (see e.g., [8, Lemma 2.6]).
A group G is called amenable if for every pair pK, δq there exists some pK, δq-invariant set F Ť G;

if this does not hold, we say that G is nonamenable. An elementary computation shows that if G
is nonamenable, then for every C ą 0 one can find a set K Ť G such that |FK| ą C|F | for every
F Ť G (see e.g., [5, proof of Theorem 4.9.2]).

4.4.1 The nonamenable case

Let G be a group and S Ť G a finite set of generators. Given r P N, we say that ∆ Ď G is

� r-separated if for every distinct g, h P ∆ we have |g´1h|S ě r.

� r-covering if for every h P G there is a g P ∆ with |g´1h|S ď r.

Notice that a maximal r-separated set ∆ Ď G is necessarily r-covering.
A bipartite graph is a graph Γ whose vertex set is a union of two disjoint sets U and V and all

its edges are between elements of U and elements of V . A perfect matching is a bijection ϕ : U Ñ V
with the property that pu, ϕpuqq is an edge for every u P U . We denote the set of neighbors of a
vertex a P U \ V by N paq. More generally, given A Ď U \ V , we let N pAq :“

Ť

aPAN paq. We say
that Γ is locally finite if for every a P U \ V , the set N paq is finite.

A necessary and sufficient condition for the existence of perfect matchings is provided by Hall’s
matching theorem [17, 16], which we now recall. A proof of the following version of this theorem can
be found in [5, Theorem H.3.6].

Theorem F (Hall’s matching theorem). Let Γ be a locally finite bipartite graph with vertex set U\V .
Then, Γ has a perfect matching if and only if the following conditions are satisfied:

(i) (left Hall condition) |N pAq| ě |A| for every A Ť U .

(ii) (right Hall condition) |N pBq| ě |B| for every B Ť V .

Our proof of Proposition 4.12 in the nonamenable case relies on the following lemma.

Lemma 4.13 (Geometric inflation). Let G be a nonamenable group, S Ť G a generating set, and
r P N. There exists n P N such that, for every r-covering subset ∆ of G, there exists a bijection
ϕ : GÑ ∆ such that |g´1ϕpgq|S ď n for every g P G.

Proof. As usual, we let Bn denote the centered ball of radius n in CaypG, Sq. Since G is nonamenable,
we can find a finite set K Ť G such that for every A Ť G, we have

|AK| ě |Br| ¨ |A| .

Let n P N be large enough such that K Ď Bn, and consider the locally finite bipartite graph Γn,
where the vertices are given by the disjoint union G \∆, and pg, hq P G ˆ∆ is an edge if and only
if |g´1h|S ď n. A map ϕ which satisfies the requirements of the lemma is then given by a perfect
matching in Γn. Thus, to prove the lemma it suffices to verify the hypotheses of Hall’s matching
theorem (Theorem F).

Clearly, for every B Ť ∆, the set N pBq Ď G is at least as large as B because ph, hq is an edge for
every h P ∆. Hence, the right Hall condition is satisfied.
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To verify the left Hall condition, consider A Ť G and notice that

N pAq “ ∆X
ď

gPA

Bnpgq “ ∆XABn .

Since ∆ is r-covering, we have

|N pAq| “ |∆XABn| ě
|ABn|
|Br|

.

As K Ď Bn, it follows that |ABn| ě |AK| ě |A| ¨ |Br|. Therefore, |N pAq| ě |A|, which means the
left Hall condition is also satisfied.

Note that if in the lemma above ∆ is also p2` ` 1q-separated for some ` P N, then the balls
B`

`

ϕpgq
˘

(for g P G) are disjoint and |ϕpgq´1ϕpgsq|S ď 2n ` 1 for every s P S, thus the pair p∆, ϕq
represents a “geometric inflated copy of G”. We remark that variants of this lemma hold in uniformly
discrete metric spaces with bounded geometry [31].

Proposition 4.14 (Nonamenable case). Let G be a nonamenable group with a generating set S Ť G,
and let 0 ă α ă β ă 1. There exists a generating set S1 Ť G of G such that

µβ
`

tx P t0, 1uG : x percolates in CaypG, Squ
˘

ď µα
`

ty P t0, 1uG : y percolates in CaypG, S1qu
˘

.

Proof. As before, we let Bn denote the centered ball of radius n in CaypG, Sq.
Let `, r P N be constants to be chosen later. Let ∆ Ď G be p2`` 1q-separated and r-covering. By

Lemma 4.13, there exists a bijection ϕ : GÑ ∆ and an integer m ě 0 such that ϕpgq P gBm for every
g P G. Consider the function ζ : t0, 1uG Ñ t0, 1uG, where

ζpxqg :“

#

1 xh “ 1 for some h P ϕpgqB`,

0 otherwise.

First, observe that if ζpxq percolates in CaypG, Sq, then x percolates in CaypG, S1q, where S1 :“
B´1
` B´1

m SBmB` “ B2p``mq`1. Indeed, suppose pgkq
8
k“1 is a self-avoiding path in CaypG, Sq with

ζpxqgk “ 1 for all k. Then, for each k, there exists an element hk P ϕpgkqB` such that xhk
“ 1.

Since ϕpgkq P gkBm, we have hk P gkBmB`. It follows that hk`1 P hkpBmB`q
´1SBmB` “ hkS

1, thus
phkq

8
k“1 is a path in CaypG, S1q. Since ∆ is p2` ` 1q-separated, the sets ϕpgkqB` are disjoint, hence

phkq
8
k“1 is self-avoiding. Therefore, x percolates in CaypG, S1q as claimed.

Next, observe that ζµα “ µβ1 where β1 :“ 1 ´ p1 ´ αq|B`|. In other words, if x is distributed
according to µα, then ζpxq is distributed according to µβ1 . Indeed, since ∆ is p2` ` 1q-separated,
the sets ϕpgqB` (for g P G) are disjoint, which implies the values xg (for g P G) are independent.
Furthermore, the probability that ζpxqg “ 1 is clearly 1´ p1´ αq|B`| “ β1.

Combining the above two observations, we obtain that

µβ1
`

ty P t0, 1uG : y percolates in CaypG, Squ
˘

“ µα
`

tx P t0, 1uG : ζpxq percolates in CaypG, Squ
˘

ď µα
`

tx P t0, 1uG : x percolates in CaypG, S1qu
˘

.

As nonamenable groups are infinite, we can now choose ` large enough such that β1 ě β and let
r ě 2` ` 1 to guarantee the existence of ∆. The result then follows from the monotonicity of the
percolation probability on the Bernoulli parameter.

Remark 4.15 (Alternative approach). Benajmini and Schramm proved that

pcpCaypG, Sqq ď
1

1` h
`

CaypG, Sq
˘ ,

where

h
`

CaypG, Sq
˘

“ inf
FŤG

|FSzF |
|F |

is the Cheeger constant of the graph CaypG, Sq [2, Theorem 2]. Note that when G is nonamenable,
by choosing the set of generators S appropriately, the Cheeger constant can be made arbitrarily large.
This provides an alternative proof of Proposition 4.14. 3
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4.4.2 The amenable case

Let G be a group. A tile set is a finite collection T “ tT1, . . . , Tnu of finite subsets of G which
contain the identity. A tiling of G by T is a map τ : GÑ T Y t∅u such that:

(i) (τ is pairwise-disjoint) For every g, h P G, if g ‰ h then gτpgq X hτphq “ ∅.

(ii) (τ covers G) For every g P G, there exists an h P G such that g P hτphq.

We shall use the following result of Downarowicz, Huczek and Zhang [8, Theorem 4.3].

Theorem G (Amenable tilings). Let G be a countable amenable group. For every F Ť G and δ ą 0,
there exists a tiling of G by a tile set T whose elements are all pF, δq-invariant.

A coupling of two probability measures p and q on measurable spaces U and V refers to a
probability measure r on U ˆ V that has marginals p and q, or equivalently, to a pair of random
variables with joint distribution r. We shall also use the following elementary version of Strassen’s
theorem on the existence of couplings [29, Theorem 11], which is equivalent to Hall’s matching
theorem.

Theorem H (Strassen’s coupling). Let p and q be probability measures on finite sets U and V respec-
tively, and let ă be a binary relation on UˆV . There exists a coupling r of p and q satisfying r

`

tpa, bq :

a ă bu
˘

“ 1 if and only if for every A Ď U , we have ppAq ď q
`

tb P V : a ă b for some a P Au
˘

.

Proposition 4.16 (Amenable case). Let G be an infinite amenable group with a generating set S Ť G,
and let 0 ă α ă β ă 1. There exists a generating set S1 Ť G of G such that

µβ
`

tx P t0, 1uG : x percolates in CaypG, Squ
˘

ď µα
`

ty P t0, 1uG : y percolates in CaypG, S1qu
˘

.

Proof. The proof is via a coupling argument.
Let δ ą 0 be a constant to be determined later. By Theorem G, there exists a finite tile set

T “ tT1, . . . , Tku where every Ti is pS, δq-invariant and G admits a tiling τ : G Ñ T Y t∅u. Let
∆ :“ τ´1pT q be the set of centers of the tiles in τ . This set is naturally endowed with a graph
structure in which there is an edge from g P ∆ to h P ∆ if gτpgqS X hτphq ‰ ∅. Let E denote the

edges of this graph. Set S1 :“
Ť

pg,hqPE

`

gτpgq
˘´1

hτphq so that for every pg, hq P E and g1 P gτpgq,

we have g1S Ě hτphq. Note that S1 is finite because up to translations, there are only finitely many
local configurations of neighboring tiles in τ .

Let us now define two functions ζ, η : t0, 1uG Ñ t0, 1u∆, where

ζpxqg :“

#

1 if xh “ 1 for some h P BS
`

gτpgq
˘

,

0 otherwise.

ηpyqg :“

#

1 if yh “ 1 for some h P gτpgq,

0 otherwise,

Observe that for x, y P t0, 1uG:

(a) If x P t0, 1uG percolates in CaypG, Sq, then ζpxq percolates in the graph p∆, Eq.

(b) If ηpyq percolates in p∆, Eq, then y percolates in CaypG, S1q.

Let Ω “ t0, 1uG ˆ t0, 1uG. We show that, for a suitable choice of δ, there exists a coupling ν of µβ
and µα such that

ν
`

tpx, yq P Ω : ζpxq ď ηpyqu
˘

“ 1 .

(The inequality ζpxq ď ηpyq means ζpxqg ď ηpyqg for every g P ∆.) If so, then

µβ
`

tx P t0, 1uG : x percolates in CaypG, Sq u
˘

“ ν
`

tpx, yq P Ω : x percolates in CaypG, Sq and ζpxq ď ηpyqu
˘

ď ν
`

tpx, yq P Ω : ζpxq percolates in p∆, Eq and ζpxq ď ηpyqu
˘

ď ν
`

tpx, yq P Ω : ηpyq percolates in p∆, Eq and ζpxq ď ηpyqu
˘

ď ν
`

tpx, yq P Ω : y percolates in CaypG, S1q and ζpxq ď ηpyqu
˘

“ µα
`

ty P t0, 1uG : y percolates in CaypG, S1qu
˘

,
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which would prove the proposition.
To this end, choose δ ă logp1 ´ αq{ logp1 ´ βq and the tile set T accordingly so as to ensure

that p1 ´ βq|BSpTiq| ě p1 ´ αq|Ti| for each tile Ti P T . To construct the coupling ν, we couple the
marginals of µβ and µα on each tile of τ independently. For each tile Ti P T , let Ui “ Vi :“ t0, 1uTi .
Define a binary relation ă on Ui ˆ Vi by letting a ă b if and only if either aBSTi

“ 0BSpTiq or
bTi
‰ 0Ti . Let pi and qi be the Bernoulli measures with parameters β and α on Ui and Vi respectively.

From the choice of δ, it follows that pipAq ď qi
`

tb P Vi : a ă b for some a P Au
˘

for every A Ď Ui.
Hence, by Strassen’s coupling theorem (Theorem H), there exists a coupling ri of pi and qi such
that ri

`

tpa, bq : ai ă biu
˘

“ 1. Note that for x, y P t0, 1uG, we have ζpxq ď ηpxq if and only
if pg´1xqτpgq ă pg´1yqτpgq for each g P ∆, hence the coupling ν thus constructed has the desired
property.

4.5 Proof of the characterization

Let us first verify that the percolated additive CAs are not pµ1{2 ˆ rµ1{2q-sensitive (see Notation 4.5).
This is in fact true in more generality.

Proposition 4.17 (Not µ-sensitive). Let G be a group generated by S Ť G. The percolated additive
CA on G associated to S is not sensitive with respect to any fully supported measure.

Proof. Let ϕ : AG Ñ AG denote the percolated additive CA on G associated to S and µ be a full-
support measure on AG. Let px,wq P AG be a configuration in which xg “ 0 and wgpsq “ 0 for every
g P G and s P S. Clearly, px,wq is a fixed point of ϕ. Furthermore, it is easy to see that rpx,wqF s “
C
`

px,wq, F, ϕ
˘

for every F Ť G. Since µ is fully supported, it follows that µ
`

C
`

px,wq, F, ϕ
˘˘

“

µ
`

rpx,wqF s
˘

ą 0 for every F Ť G, which means ϕ is not µ-sensitive (see Remark 3.3).

Proposition 4.18 (Not µ-equicontinuous). Let G be a group generated by S Ť G, ν a probability
measure on t0, 1uGˆS and ϕ the percolated additive CA on G associated to S. If the dependence process
of ϕ with measure ν has a positive probability of survival, then ϕ is not pµ1{2 ˆ νq-equicontinuous.

Proof. Let µ :“ µ1{2 ˆ ν. As before, we let Bn denote the centered ball of radius n in CaypG, Sq.
Let Q denote the set of all environment configurations w P t0, 1uGˆS on which the dependence

process of ϕ survives. By assumption, νpQq ą 0 hence µpt0, 1uG ˆQq ą 0. We claim that

µ
´

C
`

px,wq, teu, ϕ
˘

ˇ

ˇ

ˇ
rpx,wqBn

s

¯

ď 1{2 (3)

for every w P Q, x P t0, 1uG and n ě 0, which means that px,wq is not a point of density
of C

`

px,wq, teu, ϕ
˘

with respect to the co-final chain pBnq
8
n“1. This would thus imply that ϕ is

not µ-equicontinuous by Proposition 3.8.
So, let w P Q, x P t0, 1uG and n ě 0. Since the dependence process of ϕ survives on w, there exists

a time t such that MtpwqzBn is non-empty. Take the smallest such t. From Observation 4.9 and the
choice of t it follows that Mtpwq is uniquely determined by the restriction of w to Bn. In other words,
Mtpw

1q “ Mtpwq for every w1 P rwBns. Hence, according to (2), for every px1, w1q P rpx,wqBns, we
have

ϕtw1px
1qe “

´

ÿ

gPMtpwq

x1g

¯

mod 2 “
´

ÿ

gPMtpwqXBn

xg `
ÿ

gPMtpwqzBn

x1g

¯

mod 2

Since MtpwqzBn is non-empty, by Lemma 4.6, we have

µ1{2

ˆ

!

x1 P t0, 1uG :
´

ÿ

gPMtpwqzBn

x1g

¯

mod 2 “ 0
)

˙

“ µ1{2

ˆ

!

x1 P t0, 1uG :
´

ÿ

gPMtpwqzBn

x1g

¯

mod 2 “ 1
)

˙

“ 1{2 .

Therefore,

µ
´

 

px1, w1q P AG : ϕtw1px
1qe “ 1

(

ˇ

ˇ

ˇ
rpx,wqBn

s

¯

“ µ
´

 

px1, w1q P AG : ϕtw1px
1qe “ 0

(

ˇ

ˇ

ˇ
rpx,wqBn

s

¯

“ 1{2 ,

from which (3) follows.
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We can now prove the first main result of this paper: an infinite, finitely generated group satisfies
Gilman’s dichotomy if and only if it is virtually Z.

Proof of Theorem 1.3. If G is virtually Z, then by Theorem 4.3, it satisfies Gilman’s dichotomy for
every G-ergodic probability measure. Now, let G be an infinite, finitely generated group that is not
virtually Z. By Theorem C, every Cayley graph of G has a non-trivial percolation threshold. By
Proposition 4.12 there exists a set of generators S Ť G so that pcpCaypG, Sqq ă 1{2.

Let ϕ be the percolated additive CA on G associated to S. By Proposition 4.17, we have that ϕ
is not pµ1{2 ˆ rµ1{2q-sensitive.

As pcpCaypG, Sqq ă 1{2, Proposition 4.11 implies that the dependence process pMnqně0 has a
positive probability of survival with respect to rµ1{2, thus from Proposition 4.18 we conclude that ϕ is
not pµ1{2 ˆ rµ1{2q-equicontinuous, and hence the result.

5 Gilman’s dichotomy for countable groups

In this section, we extend the characterization of the groups that satisfy Gilman’s dichotomy to cover
all countable groups.

Let ϕ : AG Ñ AG be a CA. Theorem B ensures that there exists a set K Ť G and a local function
f : AK Ñ A such that ϕpxqg “ f

`

pg´1xqK
˘

for every g P G. If we let G1 :“ xKy be the subgroup of G
generated by K, then f also induces a CA rϕ : AG1 Ñ AG1 through rϕpxqh “ f

`

ph´1xqK
˘

for every

h P G1. Conversely, every CA on AG1 can be extended to a CA on AG using the same local map f .

Lemma 5.1 (Sensitivity and equicontinuity and subgroups). Let G1 be a subgroup of G. Consider a
set K Ť G1 and a local rule f : AK Ñ A. Let ϕ and rϕ be the CA induced by f on G and G1 respectively,
and let µ and rµ be Bernoulli measures with the same coordinate-wise marginal distribution on AG

and AG1 respectively. Then,

(i) ϕ is µ-sensitive if and only if rϕ is rµ-sensitive.

(ii) ϕ is µ-equicontinuous if and only if rϕ is rµ-equicontinuous.

Proof. Let W be a set of representatives from the left cosets of G1 in G, that is, a set such that every
g P G has a unique representation as g “ wh for some w PW and h P G1.

(i) First, suppose that rϕ is not rµ-sensitive. Let F Ť G. Partitioning F according to the G1-cosets
it intersects, we can write F “

Ťn
i“1 wiFi for some n P N, distinct w1, w2, . . . , wn P W and

F1, F2, . . . , Fn Ť G1. Since rϕ is not rµ-sensitive, for each i there exists a configuration rxpiq P AG1

such that rµ
`

Cprxpiq, Fi, rϕq
˘

ą 0. Choose a configuration x P AG such that pw´1
i xqG1 “ rxpiq for

each i. Note that

Cpx, F, ϕq “
n
č

i“1

Cpx,wiFi, ϕq .

Since K Ť G1, the values of ϕnpxq on wiFi depend only on the values of x on wiG1. Hence, the
sets Cpx,wiFi, ϕq are independent with respect to µ, that is,

µ
`

Cpx, F, ϕq
˘

“

n
ź

i“1

µ
`

Cpx,wiFi, ϕq
˘

.

Moreover, because of the G-invariance of µ, we have

µ
`

Cpx,wiFi, ϕq
˘

“ µ
`

w´1
i Cpx,wiFi, ϕq

˘

“ µ
`

Cpw´1
i x, Fi, ϕq

˘

.

Lastly, since Fi Ť G1, we have

µ
`

Cpw´1
i x, Fi, ϕq

˘

“ rµ
`

Cppw´1
i xqG1 , Fi, rϕq

˘

“ rµ
`

Cprxpiq, Fi, rϕq
˘

ą 0 .

Putting all together, we obtain that µ
`

Cpx, F, ϕq
˘

ą 0. Therefore, ϕ is not µ-sensitive (see
Remark 3.3).
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Conversely, suppose that rϕ is rµ-sensitive. Then, there exists a set F Ť G1 such that rµ
`

Cprx, F, rϕ
˘

“

0 for every rx P AG1 . Thus, for every x P AG, we have

µ
`

Cpx, F, ϕq
˘

“ rµ
`

CpxG1 , F, rϕq
˘

“ 0 ,

which means ϕ is µ-sensitive.

(ii) Suppose that ϕ is µ-equicontinuous. Let F Ť G1. Define X :“
 

x P AG : µ
`

Cpx, F, ϕq
˘

ą 0
(

.
Since ϕ is µ-equicontinuous, we have µpXq “ 1. Since K,F Ď G1, we have

µ
`

Cpx, F, ϕq
˘

“ rµ
`

CpxG1 , F, rϕq
˘

andX “ rXˆAGzG1 for some measurable rX Ď AG1 . Clearly, rµp rXq “ 1. Moreover, rµ
`

Cprx, F, rϕq
˘

ą

0 for all rx P rX. Therefore, rϕ is rµ-equicontinuous (see Remark 3.7).

Conversely, suppose that rϕ is rµ-equicontinuous. Let F Ť G. As in the previous part, we can
write F “

Ťn
i“1 wiFi for some n P N, distinct w1, w2, . . . , wn P W and F1, F2, . . . , Fn Ť G1, so

that

µ
`

Cpx, F, ϕq
˘

“

n
ź

i“1

rµ
`

Cppw´1
i xqG1 , Fi, rϕq

˘

for every x P AG. Since rϕ is rµ-equicontinuous, for each i, there exists a measurable set Xi Ď

AG1 with rµpXiq “ 1 such that rµ
`

Cprx, Fi, rϕq
˘

ą 0 for every rx P Xi. Let X :“
 

x P AG :

pw´1
i xqG1 P Xi for i “ 1, 2, . . . , n

(

. Clearly, µpXq “ 1. Furthermore, µ
`

Cpx, F, ϕq
˘

ą 0 for
each x P X. We conclude that ϕ is µ-equicontinuous.

We are now ready to prove the general characterization: a countable group satisfies Gilman’s
dichotomy if and only if it is locally virtually cyclic.

Proof of Theorem 1.4. Let G be a countable group.
First, suppose that G has a finitely generated subgroup G1 that is not virtually cyclic. Then,

Theorem 1.3 provides a CA on AG1 that is neither sensitive nor equicontinuous with respect to the
uniform Bernoulli measure on AG1 . By Lemma 5.1, the extension of that CA to G is neither sensitive
nor equicontinuous with respect to the uniform Bernoulli measure on AG.

Conversely, suppose that every finitely generated subgroup of G is virtually cyclic. Then, every
CA on G induces a CA on a finitely generated subgroup G1, which is either a virtually Z or a finite
group. By Theorem 4.3, we know that the dichotomy holds if G1 is virtually Z. If G1 is finite, it is
clear that every CA is equicontinuous and not sensitive with respect to every probability measure
on AG1 , thus the dichotomy holds trivially. We conclude again using Lemma 5.1 that the dichotomy
holds for G as well.

Interesting examples of non-finitely generated locally virtually cyclic groups (and hence where
Gilman’s dichotomy holds) include the additive group of rational numbers Q, the p-adic rationals
Z r1{ps, the Prüfer p-groups Z r1{ps {Z, and the group S8 of finitely supported permutations of a
countably infinite set.

6 Further remarks and questions

6.1 Examples of µ-sensitive CA on groups

On every countable group, one can find CA that are equicontinuous with respect to the uniform
Bernoulli measure (e.g., the identity). However, not every countable group admits a CA that is
sensitive with respect to the uniform Bernoulli measure. For instance, a CA on a finite group cannot
be sensitive with respect to any measure, and by Lemma 5.1, the same is true for locally finite groups,
at least with respect to Bernoulli measures. Below we provide examples of µ-sensitive CA for a class
of groups.

Proposition 6.1. Let G be a group that has a non-torsion element. Then, there exists a CA
on t0, 1uG that is sensitive with respect to the uniform Bernoulli measure µ1{2.
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Proof. Let h P G be a non-torsion element of G and let τ : t0, 1uG Ñ t0, 1uG be given by τpxqg :“ xpghq
for every g P G. Observe that, for x, y P t0, 1uG, we have y P Cpx, teu, τq if and only if xT “ yT ,
where T :“ thn : n ě 0u. As h is not a torsion element, the set T is infinite. It follows that
µ1{2

`

Cpx, teu, τq
˘

“ 0 for every x P t0, 1uG, which means τ is µ1{2-sensitive.

Question 6.2. Do infinite, finitely generated torsion groups admit CA that are sensitive with respect
to the uniform Bernoulli measure?

6.2 Site-percolated additive CA and odd percolation

A perhaps more natural candidate for a CA that does not satisfy Gilman’s dichotomy is the following:

Example 6.3 (Site-percolated additive CA). Let S be a finite generating set for a group G. Let
A :“ t0, 1, ‹u and consider the CA given by the map ϕ1 : AG Ñ AG, where

ϕ1pxqg :“

#

ř

sPS πpxgsq mod 2 if xg P t0, 1u,

‹ if xg “ ‹,
for every g P G,

where πp‹q “ πp0q :“ 0 and πp1q :“ 1. We view the sites with ‹ as being closed and the other sites
as open. Thus, the closed sites remain closed, and the open sites are updated to the sum modulo 2
of their open neighbors. #

An argument similar to that of Proposition 4.17 shows that the site-percolated additive CA is
not sensitive with respect to any fully supported measure. For the special case of the group Z2, a
result of Bramson and Neuhauser on random perturbations of CA [4] can be used to show that, for
a specific choice of the set of generators, the site-percolated additive CA is not equicontinuous with
respect to some Bernoulli measures, and thus violates Gilman’s dichotomy. We conjecture that the
same is true for all groups with non-trivial percolation threshold. This would arguably be simpler
than the CA in Example 1.2.

Question 6.4. Is there a non-virtually cyclic, finitely generated group G on which, for every choice of
the generating set S, the site-percolated additive CA is equicontinuous with respect to every Bernoulli
measure?

To contrast it with the site-percolated additive CA, we may refer to the CA of Example 1.2 as
the bond-percolated additive CA. The site- and bond-percolated additive CA are closely related to
special percolation models which we call odd (bond or site) percolation.

Let Γ be a locally finite graph and w P t0, 1uEpΓq a configuration of open and closed edges. We
say that w odd-percolates from a vertex a P V pΓq to a vertex b P V pΓq if there exists an ` P N
such that the number of open paths of length ` from a to b is odd. If the latter holds for some
a P V pΓq and infinitely many choices of b P V pΓq, we say that w odd-percolates. Lastly, we say
that a probability measure µ on t0, 1uEpΓq odd-percolates if µ assigns a positive probability to the
set of configurations that odd-percolate. Odd percolation for configurations of open and odd vertices
and for measures on such configurations are defined analogously.

Now, consider a group G with generating set S Ť G. From the discussion of Subsection 4.3, it
is evident that a configuration w odd-percolates in CaypG, Sq if and only if the dependence process
of the bond-percolated additive CA survives on w. In particular, Proposition 4.18 can be rephrased
as follows: if a probability measure ν on the environment configurations odd-percolates, then the
bond-percolated additive CA is not equicontinuous with respect to µ1{2ˆν. A similar correspondence
holds between site odd percolation and the site-percolated additive CA. This leads to the following
question.

Question 6.5. Let G be a finitely generated group that is not virtually Z. Is there a generating set
S Ť G and a non-trivial Bernoulli measure on t0, 1uG that odd-percolates in CaypG, Sq?

According to Proposition 4.11, the answer to the corresponding question for bond odd percolation is
positive.
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6.3 Topological dichotomy

As mentioned in the introduction, Kůrka proved a topological analogue of Gilman’s dichotomy [21].

Theorem 6.6 (Kůrka’s dichotomy). Every CA ϕ : AZ Ñ AZ is either sensitive or almost equicon-
tinuous.

An adaptation of Kůrka’s proof along with Lemma 4.2 can be used to extend this result to all
virtually Z groups. A complete proof was given by Audouard [1]. On the other hand, Sablik and
Theyssier constructed an example on Z2 that is not sensitive and has no equicontinuity points [27].
This construction relies on the geometry of Z2 in a non-trivial fashion, making it difficult to generalize
to other groups beyond Zd. Nonetheless, it has been conjectured that every countable group that is
not virtually cyclic admits a CA that violates Kůrka’s dichotomy [3, Conjecture 5.2.25].

Question 6.7. Let G be a finitely generated group which is not virtually cyclic. Is there a CA on G
that is neither sensitive nor almost equicontinuous?

Despite the analogy with our Theorem 1.3, the percolated additive CA cannot be used to answer
this question as they are always almost equicontinuous.

Proposition 6.8. Let G be a group generated by S Ť G. The associated percolated additive CA is
almost equicontinuous.

Proof. Given z “ px,wq P AG and F Ť G, consider the configuration z1 “ px,w1q P rzF s in which

w1gpsq :“

#

wgpsq if g P F ,

0 otherwise,

for every g P G and s P S. Note that z1 is an equicontinuity point of the CA because for every E Ť G
with FS Ď E, we have rz1Es Ď Cpz1, E, ϕq. It follows that the set of equicontinuity points of the CA
is dense. However, if the set of equicontinuity points of a topological dynamical system is dense, it
must also be residual [22, Proposition 2.30]. We conclude that the CA is almost equicontinuous.

As a consequence of Gilman’s and Kůrka’s dichotomy theorems, every almost equicontinuous
CA on Z is equicontinuous with respect to every fully supported probability measure (see also [13,
Propositions 3.4 and 3.5]). However, this fails for groups that are not virtually cyclic as the percolated
additive CA is almost equicontinuous but not µ1{2 ˆ rµ1{2-equicontinuous.

Question 6.9. Is there an almost equicontinuous CA that is not equicontinuous with respect to any
non-trivial Bernoulli measure?

6.4 Equicontinuity points with respect to a measure

There is a natural notion of an equicontinuity point with respect to a measure. Let ϕ : AG Ñ AG

be a CA and µ a probability measure on AG. We say that x P AG is a µ-equicontinuity point of
ϕ if µ

`

Cpx, F, ϕq
˘

ą 0 for every F Ť G. With this definition, ϕ is µ-equicontinuous if and only if
µ-almost all its configurations are µ-equicontinuity points.

For a G-invariant measure µ, the set of µ-equicontinuity points of ϕ is G-invariant. Thus, when µ
is G-ergodic, this set has either full or null measure. The percolated additive CA has equicontinuity
points with respect to every fully supported G-invariant measure (use Proposition 6.8), even though
the set of such points has null measure. This leads to the following question in analogy with the
construction of Sablik and Theyssier [27].

Question 6.10. Let G be a non locally virtually cyclic group. Does there exist a CA on G that has
no µ-equicontinuity points and is not µ-sensitive for some Bernoulli measure µ?

Proposition 3.8 provides a characterization of µ-equicontinuity in terms of µ-density points. We
do not know if the local version of that proposition holds.

Question 6.11. Let pJnqnPN be a co-final chain. Is it true that x P AG is a µ-equicontinuity point if
and only x is a point of µ-density of Cpx, F, ϕq with respect to pJnqnPN for every F Ť G ?

We note that in other references [13, 12], the local definition of µ-equicontinuity for G “ Z is
based on µ-density points with respect to the co-final chain of intervals centered in the origin.
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6.5 Reversible cellular automata

A CA is called reversible if it has an inverse that is itself a CA. Since the space of configurations is
compact and Hausdorff, every bijective CA is reversible. The percolated additive CA (Example 1.2)
is neither injective nor surjective, and thus is far from being reversible. It is natural to ask:

Question 6.12. Let G be a group that is not virtually cyclic. Does there exist a reversible CA that
is neither sensitive nor equicontinuous with respect to some Bernoulli measure?

We propose a candidate, which is a variant of the percolated additive CA. Let S Ť G be a set of
generators. Let A :“ t0, 1u ˆ t0, 1u ˆ t0, 1uS and define a CA ϕ : AG Ñ AG by

ϕpx, y, wqg :“

ˆ

yg,
´

xg `
ÿ

sPS

wgpsq ¨ ygs

¯

mod 2, wg

˙

, for every g P G.

A straightforward verification shows that this CA is reversible. Furthermore, one can argue as in
Proposition 4.17 that this CA is not sensitive with respect to any fully supported measure. We
suspect that an adaptation of our argument can be used to show that when G is not virtually Z, this
CA (with an appropriate choice of S) is not equicontinuous with respect to some Bernoulli measure.
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